Enantiomer Separation on Dissolved Cyclodextrin Derivatives by High-Resolution Gas Chromatography: Thermodynamic Data of Chiral Recognition

  • Volker Schurig
  • Martin Jung
Part of the Chromatographic Society Symposium Series book series (CSSS)


The analytical gas chromatographic enantiomer separation of various racemates on dissolved, derivatised β-cyclodextrins is described. Following an overview on the properties and use of cyclodextrins, a new phase, i.e., heptakis(2,6-O-dimethyl-3-O-heptafluorobutanoyl)-β-cyclodextrin, dissolved in OV-1701 or OV-225 is introduced which shows some complementary behaviour to existing phases in enantiomer separation. For the first time, thermodynamic data of enantiomer discrimination involving cyclodextrin derivatives are described. The determination of the temperature dependence of enantiomer separation shows that both the entropie and enthalpie parameters favourably contribute to chiral recognition, and that an isoenantioselective temperature is absent.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. D. Morrison, “Asymmetric Synthesis”, Vol. 1, Academic Press, Orlando (1985).Google Scholar
  2. 2.
    V. Schurig, “Asymmetric Synthesis”, J. D. Morrison, ed, Vol. 1, Academic Press, Orlando, 77 (1985).Google Scholar
  3. 3.
    V. Schurig, Kontakte (Darmstadt), 1: 3–22 (1986).Google Scholar
  4. 4.
    E. Gil-Av, B. Feibush and R. Charles-Sigler, Tetrahedr. Lett, 1009–1015 (1966).Google Scholar
  5. 5.
    H. Frank, G. J. Nicholson and E. Bayer, Angew. Chem, Int. Ed. EngL, 17: 363 (1978).CrossRefGoogle Scholar
  6. 6.
    W. A. König, “The Practice of Enantiomer Separation by Capillary Gas Chromatography”, Hüthig, Heidelberg (1987).Google Scholar
  7. 7.
    V., Schurig, Chromatographia, 13: 263–270 (1980).Google Scholar
  8. 8.
    V, Schurig and W. Bürkle, J. Am. Chem. Soc, 104: 7573–7580 (1982).Google Scholar
  9. 9.
    V. Schurig, A. Ossig and R. Link, J. High Resolut. Chromatogr, 11: 89 (1988).CrossRefGoogle Scholar
  10. 10.
    V. Schurig and R. Link, in “Chiral Separations”, D. Stevenson and I.D. Wilson, eds, Plenum Press, New York, 91–114 (1988).Google Scholar
  11. 11.
    V. Schurig, J. Chromatogr, 441: 135–153 (1988).CrossRefGoogle Scholar
  12. 12.
    V. Schurig, W. Bürkle, K. Hintzer and R Weber, J. Chromatogr, 475: 23–44 (1989).CrossRefGoogle Scholar
  13. 13.
    T. Koscielski, D. Sybilska, S. Belniak and J. Jurczak, Chromatographia, 21: 413–416 (1986).CrossRefGoogle Scholar
  14. 14.
    T. Koscielski, D. Sybilska and J. Jurczak, J. Chromatogr, 364: 297–303 (1986).CrossRefGoogle Scholar
  15. 15.
    Z. Juvancz, G. Alexander and J. Szejtli, J. High Resolut. Chromatogr, 10: 105 (1987).CrossRefGoogle Scholar
  16. 16.
    V. Schurig and H.-P. Nowotny, in “Proceedings of Advances in Chromatography 1987”, West Berlin, September 8–10, 1987; J. Chromatogr, 441:155–163 (1988).Google Scholar
  17. 17.
    W. A. König, S. Lutz and G. Wenz, Angew. Chem, Int. Ed. EngL, 27: 747–748 (1988).CrossRefGoogle Scholar
  18. 18.
    W. A. König, S. Lutz, P. Mischnick-Lübbecke, B. Brasset and G. Wenz, J. Chromatogr, 447: 193–196 (1988).CrossRefGoogle Scholar
  19. 19.
    W. A. König, S. Lutz, G. Wenz and E. von der Bey, J. High Resolut. Chromatogr, 11:506–509 (1988).Google Scholar
  20. 20.
    W. A. König, S. Lutz, W. Hagen, R Krebber, G. Wenz, K. Baldenius, J. Ehlers and H. tom Dieck, J. High Resolut. Chromatogr, 12: 35–39 (1989).CrossRefGoogle Scholar
  21. 21.
    W. A. König, Nachr. Chem. Techn. Lab, 37: 471–476 (1989).Google Scholar
  22. 22.
    H.-P. Nowotny, D. Schmalzing, D. Wistuba and V. Schurig, J. High Resolut. Chromatogr, 12: 383–393 (1989).CrossRefGoogle Scholar
  23. 23.
    V. Schurig, H.-P. Nowotny, M. Schleimer and D. Schmalzing, J. High Resolut. Chromatogr, 12: 549–551 (1989).CrossRefGoogle Scholar
  24. 24.
    V. Schurig, H.-P. Nowotny and D. Schmalzing, Angew. Chem, Int. Ed. EngL, 28: 736737 (1989).Google Scholar
  25. 25.
    D. Armstrong, in “Recent Advances in Chiral Separations”, D. Stevenson and I. D. Wilson, eds, Plenum Press, New York, 169 (1990).Google Scholar
  26. 26.
    A. Villiers, C. R. Acad.. Sci, 112: 536 (1891).Google Scholar
  27. 27.
    F. Schardinger, Wien. Klin Wochenschr, 17:207 (1904); Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. II, 29: 188 (1911).Google Scholar
  28. 28.
    F. Cramer, “EinschluJiverbindungen”, Springer Verlag, Berlin (1954).CrossRefGoogle Scholar
  29. 29.
    F. Cramer and H. Hettler, Naturwiss, 54: 625–632 (1967).CrossRefGoogle Scholar
  30. 30.
    M. L. Bender and M. Komiyama, “Cyclodextrin Chemistry”, Springer Verlag, Berlin (1978).CrossRefGoogle Scholar
  31. 31.
    J. Szejtli, Die Stärke - Starch, 26: 26–33 (1977).Google Scholar
  32. 32.
    J. J. Stezowski, K. H. Jogun, E. Eckle and K. Bardes, Nature, 274: 617–619 (1978).CrossRefGoogle Scholar
  33. 33.
    K. H. Jogun and J. J. Stezowski, Nature, 278: 667–668 (1979).CrossRefGoogle Scholar
  34. 34.
    K. H. Jogun, J. M. Maclennan and J. J. Stezowski, Fifth European Crystallographic Meeting, Abstracts, 34 (1979).Google Scholar
  35. 35.
    M. M. Harding, J. M. Maclennan and R M. Paton, Nature, 274: 621–623 (1978).CrossRefGoogle Scholar
  36. 36.
    J. A. Hamilton, M. N. Sebesan, L. K. Steinrauf and A. Geddes, Biochem. Biophys. Res. Commun., 73: 659–664 (1976).Google Scholar
  37. 37.
    R. Tokuoka, T. Fufiwara and K. Tornita, Acta Cryst, B37: 1158–1160 (1981).CrossRefGoogle Scholar
  38. 38.
    J. J. Stezowski, M. Czugler and E. Eckle, I. Int. Symposium on Cyclodextrins, Budapest, 151–161 (1981).Google Scholar
  39. 39.
    A. P. Croft and R A. Bartsch, Tetrahedron, 39: 1417–1474 (1982).CrossRefGoogle Scholar
  40. 40.
    J. Boger, R J. Corcoran and J.-M. Lehn, Hely. Chim. Acta, 61: 2190–2218 (1978).CrossRefGoogle Scholar
  41. 41.
    B. Casu, M. Reggiani, G. G. Gallo and A. Vigevani, Tetrahedron, 25: 803–821 (1968).CrossRefGoogle Scholar
  42. 42.
    F. Cramer, G. Mackensen and K. Sensse, Chem. Ber, 102: 494–508 (1969).CrossRefGoogle Scholar
  43. 43.
    F. Cramer and W. Dietsche, Chem Ber, 92: 378–384 (1959).CrossRefGoogle Scholar
  44. 44.
    D. W. Armstrong and W. de Mond, J. Chromatogr. Sci, 22: 411 (1984).Google Scholar
  45. 45.
    D. W. Armstrong, T. J. Ward, J. D. Armstrong and T. E. Besley, Science, 232: 1132 (1986).CrossRefGoogle Scholar
  46. 46.
    V. Schurig, Angew. Chem., Int. Ed. Engl, 23: 747–766 (1984).CrossRefGoogle Scholar
  47. 47.
    K. Grob, “Making and Manipulating Capillary Columns for Gas Chromatography”, Hüthig, Heidelberg, 1986, p. 124.Google Scholar
  48. 48.
    A. Venema and P. J. A. Tolsma, J. High Resolut. Chromatogr, 12: 32 (1989).CrossRefGoogle Scholar
  49. 49.
    J. Jauch, D. Schmalzing, V. Schurig, R. Emberger, R. Hopp, M. Köpsel, W. Silberzahn and P. Werkhoff, Angew. Chem, Int. Ed. Engi, 28: 1022–1023 (1989).CrossRefGoogle Scholar
  50. 50.
    E. Gil-Av and J. Herling, J. Phys. Chem, 66: 1208–1209 (1962).CrossRefGoogle Scholar
  51. 51.
    M. A. Muhs and F. T. Weiss, J. Am. Chem. Soc, 84: 4697–4705 (1962).CrossRefGoogle Scholar
  52. 52.
    J. H. Purnell, in “Gas Chromatography 1966”, A. B. Littlewood, ed, Institute of Petroleum, London, 3 (1987).Google Scholar
  53. 53.
    V. Schurig, R. C. Chang, A. Zlatkis and B. Feibush, J. Chromatogr, 99: 147–171 (1974).CrossRefGoogle Scholar
  54. 54.
    V. Schurig, J. Ossig and R Link, Angew. Chem, Int. Ed. Engl, 28: 194–196 (1989).CrossRefGoogle Scholar
  55. 55.
    H. Laderer, University of Tübingen, Thesis (1990).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Volker Schurig
    • 1
  • Martin Jung
    • 1
  1. 1.Institut für Organische Chemie der UniversitätTübingenGermany

Personalised recommendations