Advertisement

Scaling Violations beyond the Leading Order

  • R. Petronzio
  • W. Furmanski
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 70)

Abstract

This second part of lectures concerns the explicit construction of a method12) which generalizes beyond leading order the simple probabilistic interpretation of leading scaling violations. The results obtained in this language allow to predict the evolution with the variation of external invariants not only of “space-like” processes, where the off-shell partons starting the hard interaction have space-like four momenta, like in the case of deep inelastic scattering or Drell-Yan, but also of “time-like” processes, like the one-particle inclusive e+e annihilation, where the partons acting in the fragmentation functions have “time-like” off-shell invariant masses. Alternative methods exist, the operator product expansion in the first case3) and the cut-vertices formalism in the second one4), for computing equivalent quantities, i.e. the evolution of the moments of struc­ture/fragmentation functions, where, however, one cannot establish a probabilistic picture.

Keywords

Fragmentation Function Operator Product Expansion Deep Inelastic Scattering Perturbative Expansion Leading Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Curci, W. Furmanski and R. Petronzio, Nucl. Phys. B175 (1980) 402Google Scholar
  2. 2.
    W. Furmanski and R. Petronzio, Phys. Letters 97B (1980) 437Google Scholar
  3. 3.
    For a review see A. Peterman, Phys. Report 53 (1979) 159Google Scholar
  4. 4.
    A.H. Mueller, Phys. Rev. D18 (1978) 3705Google Scholar
  5. S. Gupta and A.H. Mueller, Phys. Rev. D20 (1979) 118Google Scholar
  6. 5.
    D. Amati, R. Petronzio, G. Veneziano, Nucl. Physics B140 (1978) 54 and B146 (1978) 29;Google Scholar
  7. A.V. Efremov and A.V. Radyushkin, Serpukhov prep _nt E2–11535 (1978);Google Scholar
  8. S. Libby and G. Sterman, Phys. Letters 78B (1978) 618, Phys. Rev. D18 (1978) 3252, 4737CrossRefGoogle Scholar
  9. For a review: Yu.L. Dokshitser, D.I. D’Yakonov and S.I. Troyan, Physics Reports 58 (1980) 271Google Scholar
  10. 6.
    R.K. Ellis, H. Georgi, M. Machacek, H.D. Politzer and G.G. Ross, Nucl. Phys. B152 (1979) 285Google Scholar
  11. 7.
    G. Altarelli and G. Parisi, Nucl. Physics B126 (1977) 298;Google Scholar
  12. G. Parisi, proceedings 11th rencontre de Moriond 1976Google Scholar
  13. 8.
    N.V. Gribov and L.N. Lipatov, Soviet J. Nucl. Phys. 15 (1972) 438, 675Google Scholar
  14. 9.
    A. De Rujula, R. Petronzio and A. Savoy-Navarro, Nucl. Phys. B154 (1979) 416;Google Scholar
  15. G. Parisi, Phys. Lett. 9oB (1980) 295;Google Scholar
  16. G. Curci and M. Greco, Phys. Lett. 92B (1980) 175; D. Amati, A. Bassetto, M. Ciafaloni, G. Marchesini and G. Veneziano, Nucl. Phys. B173 (1980) 429Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • R. Petronzio
    • 1
  • W. Furmanski
    • 2
  1. 1.CERNGenevaSwitzerland
  2. 2.Jagellonian UniversityKrakowPoland

Personalised recommendations