Classical Solutions in Field Theory

  • E. Corrigan
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 70)


In recent years there has been much progress in discovering solutions to the non-linear differential equations of classical field theory. However, it would be impossible to review all the work that has been done and the intention here instead is to discuss a small, but to my mind significant, area of development taking place in Euclidean field theories. Other solutions, corresponding to Yang-Mills solitons or monopoles, will be discussed by David Olive in his lectures and will not be mentioned in detail here.


Gauge Theory Classical Solution Topological Charge Classical Field Theory Instanton Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Coleman, The uses of instantons, in The whys of subnuclear Physics: Proceedings of the 1977 International School of Physics, Erice; A.Zichichi Ed. Plenum N.Y. (1979).Google Scholar
  2. 2.
    M. F. Atiyah, The Geometry of Yang-Mills Fields, Fermi Lecture Notes, Pisa (1979).Google Scholar
  3. 3.
    E. Corrigan and P. Goddard, Some aspects of instantons, in Geometrical and Topological Methods in Gauge Theories, Proceedings Montreal (1979) J. P. Harnad and S. Shnider Eds. Springer Lecture Notes in Physics vol 129 (1980).Google Scholar
  4. C. Bernard, Physical effects of instantons, same volume.Google Scholar
  5. 4.
    A. M. Din and W. J. Zakrzewski, General Classical Solutions in the CPn-1 model, to appear in Nuclear Physics B andGoogle Scholar
  6. Properties of General Classical CPn-1 solutions, to appear in Physics Letts. B.Google Scholar
  7. 5.
    A. A. Belavin, A. M. Polyakov, A. S. Schwarz and Yu. S. Tyupkin, Pseudo particle solutions of the Yang-Mills Equations, Phys. Letts. 59B (1975)85.Google Scholar
  8. 6.
    M. F. Atiyah, V. G. Drinfeld, N. J. Hitchin and Yu I. Manin Construction of Instantons, Phys. Letts 65A (1978)185.Google Scholar
  9. 7.
    H. Osborn, Calculation of multi instanton determinants, Nucl. PhysicsB159 (1979)281.Google Scholar
  10. 8.
    M. F. Atiyah, N. J. Hitchin and I. M. Singer, Self-duality in four dimensional Riemannian geometry, Proc.Roy. Soc. London A362 (1978)425.Google Scholar
  11. C. W. Bernard, N. H. Christ, A. H. Guth and E. J. Weinberg, Phys. Rev. D16 (1977)2967.Google Scholar
  12. A. S. Schwarz, On regular solutions of Euclidean Yang-Mills equations, Phys. Letts 67B (1977)172.Google Scholar
  13. 9.
    R. Jackiw, C. Nohl and C. Rebbi, Conformal properties of pseudo particle configurations, Phys. Rev. D15 (1977) 1642.Google Scholar
  14. 10.
    Some references to consult are:Google Scholar
  15. L. S. Brown and D. B. Creamer, Vacuum polarisation about instantons, Phys. Rev. D18 (1978)3695.Google Scholar
  16. A. A. Belavin, V. A. Fateev, A. S. Schwarz and Yu. S. Tynpkin, Quantum fluctuations of multi instanton solutions, Phys. Letts. 83B (1979)317.Google Scholar
  17. E. Corrigan, P. Goddard, H. Osborn and S. Templeton, Zeta function regularisation and multi instanton determinants, Nucl. Phys. B159 (1979)469.Google Scholar
  18. B. Berg and M. Luscher, Computation of quantum fluctuations of quark fields in an arbitary Yang-Mills instanton background. Nucl. Phys. B160 (1979)281.CrossRefGoogle Scholar
  19. I. Jack, Multi instanton determinants for tensor product gauge fields, Nucl. Phys. to appear.Google Scholar
  20. B. Berg and J. Stehr, Comments on the computation of quantum fluctiations of gluons in a multi instanton background, Nuclear Physics, to appear.Google Scholar
  21. P. Goddard, P. Mansfield and H. Osborn (in preparation) The functional measure for the exact SU(2) two instanton solution.Google Scholar
  22. 11.
    W. Nahm, A simple formalism for the B.P.S. monopole, Phys. Letts. 90B (1980)413.Google Scholar
  23. W. Nahm,On abelian self-dual multimonopoles, Phys. Letts. 93B (1980)42.Google Scholar
  24. 12.
    H. Eichenherr, SU(N) invariant non-linear a models, Nucl. Phys. B146 (1978)215.CrossRefGoogle Scholar
  25. V. Colo and A. Perelomov, Solution of the duality equations for the two dimensional SU(N)-invariant chiral model, Phys. Letts. 79B (1978)112.Google Scholar
  26. 13.
    A. A. Belavin and A. M. Polyakov, Metastable states of two-dimensional isotropic ferromagnets, J.E.T.P. Letts. 22 (1975) 245.Google Scholar
  27. 14.
    See, for example, Backlund transformations, the inverse scattering method, solitons and their applications, N.S.F. workshop on contact transformations: R.M.Miura ed., Springer lecture notes in mathematics 515 Berlin (1976)Google Scholar
  28. 15.
    H. J. Borchers and W. D. Garber, local theory of solutions for the 0(2k+1) o model, Comm. Math. Phys. 72 (1980)77.CrossRefGoogle Scholar
  29. 16.
    W. J. Zakrzewski, private communication.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • E. Corrigan
    • 1
  1. 1.Department of MathematicsUniversity of DurhamUK

Personalised recommendations