Advertisement

Classical Solutions in Gauge Theories — Spherically Symmetric Monopoles — Lax Pairs and Toda Lattices

  • David Olive
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 70)

Abstract

The composite title deserves an explanation. I gave two lectures under the general title of “classical solutions in gauge theories”. Much of the material was introductory in nature and has been used in lectures to other audiences and has already been published(1,2,3,4,5), and therefore I propose to summarize it rather than repeat the details in print. The last quarter was devoted to the subject “Spherically symmetric monopoles — Lax Pairs- and Toda Lattices”. This topic has developed recently and brings together ideas from different branches of theoretical physics and mathematics. I feel it is an extremely important development, so far rather inaccessible, and I want to try to make it available to the wider audience it deserves by treating it at some length.

Keywords

Gauge Theory Classical Solution Simple Root Magnetic Monopole Gauge Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    P. Goddard and D. Olive, Rep.Prog.Phys. 41, 1357 (1978)CrossRefGoogle Scholar
  2. 2.
    D. Olive, Physics Reports 49, 165 (1979)CrossRefGoogle Scholar
  3. 3.
    D. Olive, Czechoslovak Journal of Physics B29 73 (1979)CrossRefGoogle Scholar
  4. 4.
    D. Olive, Proceedings of International Conference on High Energy Physics, Geneva 1979 (CERN), p.953.Google Scholar
  5. 5.
    D. Olive, Mathematical Problems in Theoretical Physics edited by K. Osterwalder, Lecture Notes in Physics 116, Springer 1980 p. 249.Google Scholar
  6. 6.
    S. Mandelstam, Phys. Rep. 23C, 245, (1976).CrossRefGoogle Scholar
  7. S. Mandelstam, Lecture given at Les Houches Winter Meeting February 1980.Google Scholar
  8. G.’tHooft, Nuclear Physics B138 1 (1978)Google Scholar
  9. G.’tHooft, Nuclear Physics B153 141 (1979)CrossRefGoogle Scholar
  10. A. Belavin,A. Polyakov, A. Schwarz and Y. Tyupkin. Phys. Letters 59B, 85 (1975)CrossRefGoogle Scholar
  11. 8.
    D. Olive, Rivista del Nuovo Cimento 2, 1 (1979)CrossRefGoogle Scholar
  12. E. Corrigan, Physics Reports 49, 95 (1979)CrossRefGoogle Scholar
  13. M.F. Atiyah, Geometry of Yang-Mills Fields, Lezione Fermiani. Pisa, 1979.Google Scholar
  14. 14.
    V.L. Golo, A.M.Perelomov, Physics Lett B 79B 112(1978).CrossRefGoogle Scholar
  15. H.Eichenherr, Nucl. Phys. B146 2. 15 (1978).CrossRefGoogle Scholar
  16. 10.
    A.M. Perelomov, Commun. Math. Phys. 63, 237 (1978).CrossRefGoogle Scholar
  17. 11.
    J. Zinn-Justin, Physics Reports 49, 205 (1979).CrossRefGoogle Scholar
  18. 12.
    G. t’Hooft, Phys. Rev. D14 3432 (1976)CrossRefGoogle Scholar
  19. 13.
    E.B. Bogomolny Sov. J. Nucl. Phys. 24, 449 (1976)Google Scholar
  20. 14.
    T.H.R. Skyrme Proc. R. Soc. A262, 237 (1961)Google Scholar
  21. R. Streater and I.F. Wilde, Nucl. Phys. B24 561 (1970).CrossRefGoogle Scholar
  22. S. Coleman, Phys. Rev. D11, 2088 (1975).Google Scholar
  23. S.Mandelstam, Phys. Rev. D11, 3026 (1975).Google Scholar
  24. 15.
    M. Ablowitz, D. Kaup, A.C. Newell and H. Segur, Phys. Rev. Lett. 30, 12. 62, (1973).CrossRefGoogle Scholar
  25. 16.
    L.A. Takhtadzhyan and L.D. Faddeev. Teor.Mat.Fiz. 21, 160 (1974).Google Scholar
  26. 17.
    G. t’Hooft, Nucl. Phys. B79, 276 (1974).CrossRefGoogle Scholar
  27. A.M.Polyakov, JETP Lett.20,194Google Scholar
  28. 18.
    P.A.M. Dirac, Proc.R. Soc. A133 60 (1931).Google Scholar
  29. 19.
    M.K. Prasad and C.M. Sommerfield, Phys. Rev. Lett, 35, 760 (1975)CrossRefGoogle Scholar
  30. 20.
    B. Julia and A. Zee, Phys. Rev. D11, 2. 227 (1975)Google Scholar
  31. 21.
    S. Coleman, S. Parke, A. Neveu and C.M. Sommerfield. Phys. Rev. D15, 554 (1977).Google Scholar
  32. 22.
    C. Montonen and D. Olive, Phys. Lett. 72B, 117 (1977).CrossRefGoogle Scholar
  33. 23.
    D. Olive, Nucl. Phys. B153 1 (1979).CrossRefGoogle Scholar
  34. 24.
    E. Witten and D. Olive, Phys Lett. 78B, 97 (1978)CrossRefGoogle Scholar
  35. A. D’Adda, R. Horsley and P. DiVecchia, Phys. Lett. 76B 298 (1978).Google Scholar
  36. 25.
    S. Rouhani, Imperial college Preprint. ICTP/79/80–50. 26Google Scholar
  37. 26.
    D.Wilkinson and A.S.Goldhaber,Phys.Rev.D16,1221(1977)Google Scholar
  38. 27.
    F.A. Bais and H.A. Weldon, Phys. Rev. Lett, 41, 601 (1978)CrossRefGoogle Scholar
  39. D.Wilkinson and F.A. Bais Phys. Rev.D19,2410(1978)Google Scholar
  40. 28.
    F.A. Bais, Talk presented at International Workshop on High Energy Physics and Field Theory at Serpukhov 1979. Leuven preprint: KUL-TF-79/021.Google Scholar
  41. 29.
    A.N. Leznov and M.V. Saveliev: Lett in Math. Physics 3, 489 (1979).CrossRefGoogle Scholar
  42. A.N. Leznov and M.V. Saveliev: Comm. Math. Phys 74, 111 (1980).CrossRefGoogle Scholar
  43. 30.
    E. Corrigan, D. Olive, D.B.Fairlie and J. Nuyts: Nucl. Phys. 65B 78 (1976).Google Scholar
  44. 31.
    P.D. Lax, Comm.Pure. Appl. Math 21, 467, (1968).Google Scholar
  45. 32.
    E.B. Dynkin, Amer.Mth. Soc. Transl.Series 2, 6, 111 (1965).Google Scholar
  46. 33.
    J.E. Humphreys, Introduction to Lie algebras and representation theory ( Springer, Berlin, 1972 ).CrossRefGoogle Scholar
  47. 34.
    M. Toda, Progress of theoretical phys. (Suppl.) 45, 174 (1970) M. Toda, Physics Reports, 18, 1 (1975).Google Scholar
  48. 35.
    E. Fermi, J. Pasta and S. Ulam, Los Alamos Report. LA-1940 (1955); Collected Papers of Enrico Fermi, Vol.II (University of Chicago Press, 1965 ) p. 978.Google Scholar
  49. 36.
    H. Flaschka, Phys. Rev. B9, 1924 (1974).Google Scholar
  50. 37.
    B. Kostant, Advances in Mathematics, 34, 195 (1979).CrossRefGoogle Scholar
  51. 38.
    J. Moser, Lecture Notes in Physics, Vol.38, Springer p.468.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • David Olive
    • 1
  1. 1.Blackett LaboratoryImperial CollegeLondonUK

Personalised recommendations