Advertisement

The Benzidine Rearrangement

  • D. V. Banthorpe

Abstract

The acid-catalysed conversion of hydrazobenzene (I) into benzidine (II), equation (1), was discovered by Hofmann (1863); fifteen years later a minor product, diphenyline (III) was reported and the structures of both isomers were established (Schmidt and Schultz, 1878, 1881). This reaction was the prototype of a large class of aromatic rearrangements of outstanding theoretical interest which give products that are of considerable importance in the dyestuffs industry. Semi-quantitative product-studies, especially those of Jacobson over the period 1892 to 1922, showed that ring and N-substituted hydrazo-arenes (of both the benzene and naphthalene series) could give o- and p-semidines (IV, V) with 2,N′- and 4,N′,-linking of the aryl rings respectively, in addition to the 4,4′ and 4,2′-linked products of the original example, together with oxidation and dis-proportionation products (azo-compounds and fission amines). The whole range of products is summarised in scheme (2); many hydrazo compounds give essentially only one or two of these types and often ring substituents restrict the possibilities for coupling, but recent paper-chromatographic analyses of products from reaction of several substrates suggest that all the possible isomers are usually formed, albeit some in trace amounts (Vecera, Petranek and Gasparic, 1957a, b). The whole family of interconversions, the mechanism of which has remained obscure until recently, has become collectively known as the Benzidine Rearrangement.

Keywords

Transition State Kinetic Form Rearrangement Product Tetrahedron Letter Thermal Rearrangement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan, Z. J. and Chmatal, V. (1964) Coll. Czech. Chem. Comm. 29, 531.Google Scholar
  2. Allan, Z. J. and Rakusan, J. (1966) Coll. Czech. Chem. Comm. 31, 3555.Google Scholar
  3. Arcus, C. LHoward, T. J. and South, D. C. (1964) Chem. Ind. (London) 1756.Google Scholar
  4. Bamberger, E. (1921) Liebigs. Ann. 424, 233.Google Scholar
  5. Banthorpe, D. V., Hughes, E. D. and Ingold, C. K. (1962a) J. Chem. Soc. 2386.Google Scholar
  6. Banthorpe, D. V. and Hughes, E. D. (1962a) J. Chem. Soc. 2402.Google Scholar
  7. Banthorpe, D. V. (1962a) J. Chem. Soc. 2407. Banthorpe, D. Y. (1962b) J. Chem. Soc. 2413.Google Scholar
  8. Banthorpe, D. V., Hughes, E. D. and Ingold, C. K. (1962b) J. Chem. Soc. 2418.Google Scholar
  9. Banthorpe, D. Y. (1962c) J. Chem. Soc. 2429.Google Scholar
  10. Banthorpe, D. V., Ingold, C. K., Roy, J. and Somerville, S. M. (1962) J. Chem. Soc. 2436.Google Scholar
  11. Banthorpe, D. Y., Hughes, E. D., Ingold, C. K. and Roy, J. (1962) J. Chem. Soc. 3294.Google Scholar
  12. Banthorpe, D. V., Hughes, E. D., Ingold, C. K. and Humberlin, R. (1962) J. Chem. Soc. 3299.Google Scholar
  13. Banthorpe, D. Y. and Hughes, E. D. (1962b) J. Chem. Soc. 3308.Google Scholar
  14. Banthorpe, D. Y. and Hughes, E. D. (1962c) J. Chem. Soc. 3314.Google Scholar
  15. Banthorpe, D. Y. and Hughes, E. D. (1964a) J. Chem. Soc. 2849.Google Scholar
  16. Banthorpe, D. Y. (1964)J. Chem. Soc. 2854.Google Scholar
  17. Banthorpe, D. Y. and Hughes, E. D. (1964b) J. Chem. Soc. 2860.Google Scholar
  18. Banthorpe, D. Y., Hughes, E. D. and Ingold, C. K. (1964) J. Chem. Soc. 2864.Google Scholar
  19. Banthorpe, D. Y., Bramley, R. and Thomas, J. A. (1964) J. Chem. Soc. 2890.Google Scholar
  20. Banthorpe, D. Y., Thomas, J. A. and Williams, D. L. H. (1965) J. Chem. Soc. 6135.Google Scholar
  21. Banthorpe, D. V., Cooper, A. and Ingold, C. K. (1967) Nature, Lond. 216, 232.Google Scholar
  22. Banthorpe, D. Y., Cooper, A., Q’Sullivan, M. and Ingold, C. K. (1968) J. Chem. Soc. (B) 605 et seq. Google Scholar
  23. Banthorpe, D. Y. and Williams, M. R. (unpublished observations).Google Scholar
  24. Barnes, C. S., Pausacker, K. H. and Badcoek, W. E. (1951) J. Chem. Soc. 730.Google Scholar
  25. Bell, F., Kenyon, J. and Robinson, P. H. (1926) J. Chem. Soc. 1239.Google Scholar
  26. Beyer, H. and Kreutzberger, A. (1952) Chem. Ber. 85, 333.Google Scholar
  27. Beyer, H. and Haase, H. J. (1957) Chem. Ber. 90, 66.Google Scholar
  28. Beyer, H., Haase, H. J. and Wildgrube, W. (1958) Chem. Ber. 91, 247.Google Scholar
  29. Biilmann, E. and Blom, J. H. (1924) J. Chem. Soc. 125, 1719.Google Scholar
  30. Blackadder, D. A. and Hinshelwood, C. N. (1957a) J. Chem. Soc. 2904.Google Scholar
  31. Blackadder, D. A. and Hinshelwood, C. N. (1957b) J. Chem. Soc. 2911.Google Scholar
  32. Bloink, G. J. and Pausacker, K. H. (1950) J. Chem. Soc. 950.Google Scholar
  33. Brownstein, S., Bunton, C. A. anughes, E. D. (1956) Chem. Ind. (London) 981.Google Scholar
  34. Bunnett, J. F. (1961) J. Am. Chem. Soc. 83, 4956et seq. Google Scholar
  35. Bunton, C. A., Ingold, C. K. and Mhala, M. (1957) J. Chem. Soc. 1906.Google Scholar
  36. Carlin, R. B., Nelb, R. G. and Odioso, R. C. (1951) J. Am. Chem. Soc. 73, 1002.Google Scholar
  37. Carlin, R. B. and Odioso, R. C. (1954a) J. Am. Chem. Soc. 76, 100.Google Scholar
  38. Carlin, R. B. and Odioso, R. C. (1954b) J. Am. Chem. Soc. 76, 2345.Google Scholar
  39. Carlin, R. B. and Foltz, G. E. (1956) J. Am. Chem. Soc 78, 1992.Google Scholar
  40. Carlin, R. B. and Wich, G. S. (1958) J. Am. Chem. Soc. 80, 4023.Google Scholar
  41. Clemo, G. R. and Dawson, E. C. (1939) J. Chem. Soc. 1114.Google Scholar
  42. Clemo, G. R. and Lee, T. B. (1954) J. Chem. Soc. 2417.Google Scholar
  43. Clovis, J. S. and Hammond, G. S. (1963) J. Org. Chem. 28, 3290.Google Scholar
  44. Cohen, M. D. and Hammond, G. S. (1953) J. Am. Chem. Soc. 75, 880.Google Scholar
  45. Colonna, M. and Risaliti, A. (1956) Qazz. Chim. Ital. 86, 288.Google Scholar
  46. Colonna, M. and Risaliti, A, (1959) Qazz. Chim. Ital. 89, 2493.Google Scholar
  47. Cooper, A. (1966) Mechanism of the benzidine rearrangement. Ph.D. Thesis (London). Google Scholar
  48. Coulson, C. A. and Dewar, M. J. S. (1947) Disc. Faraday. Soc. 2, 54.Google Scholar
  49. Croce, L. J. and Gettler, J. D. (1953) J. Am. Chem. Soc. 75, 874.Google Scholar
  50. Cox, J. R. and Dunn, M. F. (1963) Tetrahedron Letters 985.Google Scholar
  51. Das-Gupta, B. C. and Bose, P. K. (1929) J. Ind. Chem. Soc. 6, 495.Google Scholar
  52. Davies, D. W. and Hammick, D. LI. (1954) J. Chem. Soc. 475.Google Scholar
  53. Dewar, M. J. S. (1946a) J. Chem. Soc. 406.Google Scholar
  54. Dewar, M. J. S. (1946b) J. Chem. Soc. 111. Google Scholar
  55. Dewar, M. J. S. (1949) Electronic Theory of Organic Chemistry, Oxford Univ. Press, London, p. 233.Google Scholar
  56. Dewar, M. J. S. (1951) Ann. Reports. Prog. Chem. (London) 48, 126.Google Scholar
  57. Dewar, M. J. S. (1959) Theoretical Organic Chemistry, Kekule Symposium, Butterworths, London, p. 195.Google Scholar
  58. Dewar, M. J. S. and Micol, H. (1959) Tetrahedron Letters No. 5, 22.Google Scholar
  59. Dewar, M. J. S. (1963) Molecular Rearrangements, edited P. de. Mayo, Vol. 1, Interscience, New York, p. 323.Google Scholar
  60. Dewar, M. J. S. and Marchard, A. P. (1965) Ann. Rev. Phys. Chem. 16, 338.Google Scholar
  61. Dziurzymski, M. (1908)Bull. Acad. Sei. Cracovie, 401 Chem. Abstr. 2, 2796Google Scholar
  62. Edward, J. T. (1954)J. Chem. Soc. 1464.Google Scholar
  63. Fedorova, I. P. and Mironova, G. F. (1962) Zh. Obshch. Khim. 32, 1893.Google Scholar
  64. Ferstandig, L. L. (1963) Tetrahedron Letters 1235.Google Scholar
  65. Fox, W. M. and Waters, W. A. (1965) J. Chem. Soc. 4628.Google Scholar
  66. Galus, Z. and Adams, R. N. (1962) J. Am. Chem. Soc. 84, 2061.Google Scholar
  67. Galus, Z., White, R. M., Rowland, F. S. and Adams, R. N. (1962) J. Am. Chem. Soc. 84, 2065.Google Scholar
  68. Galus, Z. and Adams, R. N. (1963) J. Phys. Chem. 67, 862.Google Scholar
  69. Hammick, D. LI. and Mason, S. F. (1946) J. Chem. Soc. 638.Google Scholar
  70. Hammick, D. LI. and Mason, S. F. (1949) J. Chem. Soc. 1939.Google Scholar
  71. Hammick, D. LI. and Munro, D. C. (1950) J. Chem. Soc. 2049.Google Scholar
  72. Hammond, G. S. and Shine, H. J. (1950) J. Am. Chem. Soc. 72, 220.Google Scholar
  73. Hammond, G. S. and Grundemeier, W. (1955) J. Am. Chem. Soc. 77, 2444.Google Scholar
  74. Hammond, G. S., Seidel, B. and Pincock, R. G. (1963) J. Org. Chem. 28, 3275.Google Scholar
  75. Hammond, G. S. and Clovis, J. S. (1962) Tetrahedron Letters 945.Google Scholar
  76. Hammond, Gr. S. and Clovis, J. S. (1963) J. Org. Chem. 28, 3283.Google Scholar
  77. Hashimoto, S. and Sunamato, J. (1964) Kogyo. Kagaku. Zasshi. 67, 2090 [Chem. Abstr. 63, 4119].Google Scholar
  78. Hashimoto, S., Shimkai, I. and Sunamoto, J. (1966)Kogyo. Kagaku. Zasshi 69, 290[Chem. Abstr. 67, 137].Google Scholar
  79. Hofmann, A. W. (1863) Proc. Roy. Soc. 12, 576.Google Scholar
  80. Holt, P. F. and Hughes, B. P. (1953) J. Chem. Soc. 1666.Google Scholar
  81. Holt, P. F. and Hughes, B. P. (1954) J. Chem. Soc. 764.Google Scholar
  82. Holt, P. F. and Hughes, B. P. (1955) J. Chem. Soc. 98.Google Scholar
  83. Holt, P. F. and Mae, C. J. (1964) J. Chem. Soc. 1759.Google Scholar
  84. Hughes, E. D. and Ingold, C. K. (1941) J. Chem. Soc. 608.Google Scholar
  85. Hughes, E. D. and Ingold, C. K. (1950) J. Chem. Soc. 1638.Google Scholar
  86. Ingold, C. K. and Kidd, H. Y. (1933) J. Chem. Soc. 984.Google Scholar
  87. Jacobson, P. (1909) Liebigs. Ann. 367, 304.Google Scholar
  88. Jacobson, P. (1922) Liebigs. Ann. 428, 76.Google Scholar
  89. Kenner, G. W. (1932) J. Chem. Soc. 711.Google Scholar
  90. Klauke, E. and Bayer, O. (1963)D.R.P. 115 4091 [Chem. Abstr 60, 457].Google Scholar
  91. Krolik, L. G. and Lukashevich, V. O. (1949) Dokl. Akad. Nauk. SSSR 65, 37.Google Scholar
  92. Krolik, L. G. and Lukashevich, Y. O. (1952) Dokl. Akad. Nauk. SSSR 87, 229.Google Scholar
  93. Krolik, L. G. and Lukashevich, V. O. (1953) Dokl. Akad. Nauk. SSSR 93, 663Google Scholar
  94. Krolik, L. G. and Lukashevich, V. O. (1960) Dokl. Akad. Nauk. SSSR 185, 1139.Google Scholar
  95. Lefiler, J. E., Faulkner, R. D. and Petropoulos, C. C. (1958) J. Am. Chem. Soc. 80,5435.Google Scholar
  96. van Loon, J. P. (1904) Ree. Tran. Chim. 23, 62.Google Scholar
  97. Lukashevich, V. O. and Krolik, L. G. (1948) Dokl. Akad. Nauk. SSSR 63, 543.Google Scholar
  98. Lukashevich, Y. O. and Krolik, L. G. (1959) Dokl. Akad. Nauk. SSSR 129, 117.Google Scholar
  99. Lukashevich, Y. O. and Krolik, L. G. (1962) Dokl. Akad. Nauk. SSSR 147,1090.Google Scholar
  100. Lukashevich, Y. O. (1964) Dokl. Akad. Nauk. SSSR 159, 1095.Google Scholar
  101. Lukashevich, Y. O. (1967) Tetrahedron 23, 1317.Google Scholar
  102. Meisenheimer, J. and Witte, K. (1903) Ber 36, 4153.Google Scholar
  103. Miller, B. (1964) J. Am. Chem. Soc. 86, 1127.Google Scholar
  104. Mizoguchi, T. and Adams, R. N. (1962) J. Am. Chem. Soc. 84, 2058.Google Scholar
  105. Mohlinger, D. N., Adams, R. N. and Argersinger, W. J. (1962) J. Am. Chem. Soc. 84, 3618.Google Scholar
  106. Möller, F. (1958) Methoden der Organischen Chemie, vol. 11(2), 4th Edition edited Houhen-Weyl, Thieme, Stuttgart, p. 876.Google Scholar
  107. Morgan, L. R. and Aubert, C. C. (1962) Proc. Chem. Soc. 73. Google Scholar
  108. Murreil, J. N. (1962) in Chem. Soc. Special. Rubi. No. 16, 118.Google Scholar
  109. Nesmeyanov, A. N. and Golovoyya, R. V. (1960) Dokl. Akad. Nauk. SSSR 133, 1337.Google Scholar
  110. Nesmeyanov, A. N., Perevalova, E. G. and Nikitina, T. Y. (1961) Dokl. Akad. Nauk. SSSR 138,1118.Google Scholar
  111. Oglesby, D. M., Johnson, J. D. and Reilley, C. N. (1966) Anal. Chem. 38, 385.Google Scholar
  112. Orelkin, P. IT., Ryskaltsehuk, O. Y. and Aizikovitsch, P. (1931) J. Gen. Chem. USSR 1, 696.Google Scholar
  113. Orr, S. F. D., Sims, P. and Manson, D. (1956) J. Chem. Soc. 1337.Google Scholar
  114. Osugi, J., Sasaki, M. and Onishi, I. (1966) Rev. Phys. Chem. (Japan) 33, 100.Google Scholar
  115. O’Sullivan, M. (1966) The acid-catalysed rearrangements of hydrazobenzenes. M.Sc. Thesis, London.Google Scholar
  116. Parish, J. H. and Whiting, M. C. (1964) J. Ghem. Soc. 4713.Google Scholar
  117. Pongratz, A. and Wüstner, H. (1940) Ber 73, 423.Google Scholar
  118. Pongratz, A. and Scholtis, K. (1942) Ber 75, 138.Google Scholar
  119. Pongratz, A., Böhmert-Süss, S. and Scholtis, K. (1944) Ber. 77, 651Google Scholar
  120. Pyl, T., Lahmer, H. and Beyer, H. (1961) Ghem. Ber. 94, 3217.Google Scholar
  121. Rakusan, J. and Allan, Z. J. (1966) Tetrahedron Letters 4955.Google Scholar
  122. Rakusan, J. and Allan, Z. J. (1967) Göll. Gzech. Ghem. Gomm. 32, 2882.Google Scholar
  123. Reeves, R. L. and Andrews, R. W. (1967) J. Am. Ghem. Soc. 89, 1715.Google Scholar
  124. Risaliti, A. and Pentimalli, L. (1956) Ann. Ghim. 46, 1050.Google Scholar
  125. Ritter, J. J. and Ritter, F. O. (1931) J. Am. Ghem. Soc. 53, 670.Google Scholar
  126. Robinson, G. M. and Robinson, R. (1918) J. Ghem. Soc. 113, 639.Google Scholar
  127. Robinson, R. (1941)J. Ghem. Soc. 220.Google Scholar
  128. Robinson, B. (1963) Ghem. Rev. 63, 373.Google Scholar
  129. Sah, P. T. and Yuin, K-H. (1939) Ree Trav. Ghim. 58, 751.Google Scholar
  130. Schlenck, W. and Bergmann, E. (1927) Liebigs Ann. 463, 281.Google Scholar
  131. Schmidt, H. and Schultz, G. (1878) Ber. 11, 1754.Google Scholar
  132. Schmidt, H. and Schultz, G. (1881) Liebigs Ann. 207, 320, 348.Google Scholar
  133. Schulte-Frohlinde, D. (1957) Liebigs Ann. 612, 131.Google Scholar
  134. Schüler, P. (1944) Dissertation, Berlin [Ghem. Abstr. 40, 6069].Google Scholar
  135. Schwartz, W. M. and Shain, I. (1965) J. Phys. Ghem. 69, 30.Google Scholar
  136. Seidel, B. and Hammond, G. S. (1963) J. Org. Ghem. 28, 3280.Google Scholar
  137. Shamin-Ahmed, S. and Hasan, H. (1952) J. Ind. Ghem. Soc. 29, 955.Google Scholar
  138. Shine, H. J. (1956) J. Am. Ghem. Soc. 78, 4807.Google Scholar
  139. Shine, H. J. and Bear, J. L. (1957) Ghem. Ind. (London) 565.Google Scholar
  140. Shine, H. J. and Trisler, J. C. (1960) J. Am. Ghem. Soc. 82, 4054.Google Scholar
  141. Shine, H. J., Huang, F. T. and Snell, R. L. (1961) J. Org. Ghem. 26, 380.Google Scholar
  142. Shine, H. J. and Chamness, J. T. (1963) J. Org. Ghem. 28, 1232.Google Scholar
  143. Shine, H. J. and Stanley, J. P. (1965) Ghem. Gomm. 294.Google Scholar
  144. Shine, H. J. and Chamness, J. T. (1967) J. Org. Ghem. 32, 901.Google Scholar
  145. Shine, H. J. and Stanley, J. P. (1967) J. Org. Ghem. 32, 905.Google Scholar
  146. Shine, H. J. (1967a)Tetrahedron Letters 4043.Google Scholar
  147. Shine, H. J. (1967b) Aromatic Rearrangements, Elsevier, Amsterdam, p. 126.Google Scholar
  148. Shine, H. J., Baldwin, M. A. and Harris, C. (1968) Tetrahedron Letters 977.Google Scholar
  149. Smith, J. M., Wheland, G. W. and Schwartz, W. M. (1952) J. Am. Ghem. Soc. 74, 2282.Google Scholar
  150. Snyder, L. C. (1962) J. Am. Ghem. Soc. 84, 340.Google Scholar
  151. Sterba, V., Sagner, Z. and Matrka, M. (1965) Göll. Gzech. Ghem. Gomm. 30, 2475, 2477.Google Scholar
  152. Sterba, Y. and Yecera, M. (1966) Göll. Gzech. Ghem. Comm. 31, 3486.Google Scholar
  153. Stieglitz, J. (1903) Am. Ghem. J. 29, 62.Google Scholar
  154. Stieglitz, J. and Curme, G. O. (1913a) Ber. 46, 911.Google Scholar
  155. Stieglitz, J. and Curme, G. O. (1913b) J. Am. Ghem. Soc. 35, 1143.Google Scholar
  156. Tichwinsky, M. (1903) J. Russ. Phys. Ghem. Soc. 35, 667.Google Scholar
  157. Yecera, M., Gasparic, J. and Petranek, J. (1956) Ghem. Ind. (London) 99.Google Scholar
  158. Yecera, M., Gasparic, J. and Petranek, J. (1957a) Ghem. Ind. (London) 299.Google Scholar
  159. Yecera, M., Gasparic, J. and Petranek, J. (1957b) Coll. Czech. Chem. Comm. 22, 1603.Google Scholar
  160. Yecera, M. and Petranek, J. (1958) Coll. Czech. Chem. Comm. 23, 249.Google Scholar
  161. Yecera, M. (1958) Chem. Listy 52, 1373.Google Scholar
  162. Vecera, M., Synek, L. and Sterba, V. (1960) Coll. Czech. Chem. Comm. 25, 1992.Google Scholar
  163. Yecera, M. and Petranek, J. (1960) Coll. Czech. Chem. Comm. 25, 2005.Google Scholar
  164. Yeibel, S. (1954) Canad. J. Chem. 32, 638.Google Scholar
  165. Ward, E. and Pearson, B. D. (1959) J. Chem. Soc. 3378.Google Scholar
  166. Weiss, J. (1940) Trans. Faraday Soc. 36, 856.Google Scholar
  167. Wheland, G. W. and Schwartz, J. R. (1949) J. Chem. Rhys. 17, 425.Google Scholar
  168. White, W. N. and Preisman, R. (1961) Chem. Ind. (London) 1752.Google Scholar
  169. Wieland, H. (1908) Ber. 41, 3498.Google Scholar
  170. Wieland, H. (1912a) Ber. 45, 492.Google Scholar
  171. Wieland, H. (1912b) Liebigs Ann. 392, 127.Google Scholar
  172. Wieland, H. (1913) Ber. 46, 3296.Google Scholar
  173. Wieland, H. (1915) Ber. 48, 1095, 1098.Google Scholar
  174. Wittig, G., Joos, W. and Rathfelder, P. (1957) Liebigs Ann. 610, 180.Google Scholar
  175. Wittig, G. and Grolig, J. E. (1961) Ber. 94, 2148.Google Scholar
  176. Wittig, G., Borzel, P., Neumann, F. and Klau, G. (1966) Liebigs Ann. 691, 109.Google Scholar
  177. Yamada, S., Chichata, I. and Tsurui, R. (1954) Pharm. Bull. (Japan) 2, 59 [Chem. Abstr. 50, 214].Google Scholar
  178. Yamada, S., Chichata, I. and Tsurui, R. (1955) Jap. Patent 23 74 [Chem. Abstr. 51, 14803].Google Scholar
  179. Zollinger, H. (1961) Azo and Diazo Chemistry, Interscience, London, pp. 301, 302.Google Scholar

Copyright information

© Logos Press Limited 1969

Authors and Affiliations

  • D. V. Banthorpe
    • 1
  1. 1.Chemistry DepartmentUniversity College LondonUK

Personalised recommendations