Advertisement

Thermal Expansion and Magnetic Properties of Fe-Pd Invar Alloys Containing Carbon

  • K. Fukamichi
  • M. Kikuchi
  • T. Nakayama

Abstract

In order to study the thermal expansion characteristics and the magnetic properties of Fe-Pd Invar alloys, the γ-phase was stabilized by addition of carbon. Since the carbon addition makes cold working easy, the effect of cold working on the thermal expansion characteristics was also investigated. The Curie temperature and the saturation magnetization were almost independent of the carbon content. The thermal expansion anomaly below the Curie temperature became more remarkable by addition of carbon, and it was significantly pronounced by cold working, as indicated by a negative thermal expansion in a wide temperature range. It was found from the thermal expansion hysteresis curves that the γ-phase of the alloys containing carbon is more stable than that of Fe70Pd30 binary alloy. The linear magnetostriction at room temperature showed a large positive value by quenching or addition of carbon. The ΔE effect became small by addition of carbon in the quenched state.

Keywords

Thermal Expansion Cold Working Curie Temperature Saturation Magnetization Invar Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    PHYSICS AND APPLICATIONS OF INVAR ALLOYS,ed. H. Saito, Maruzen Co. Ltd. Tokyo (1978).Google Scholar
  2. 2.
    K. Jessen, Ann. Phys. (Leipzig) 9, 313 (1962).Google Scholar
  3. 3.
    A. Kussmann and K. Jessen, J. Phys. Soc. J.pan, Suppl. 17 - B1, 136 (1962).Google Scholar
  4. 4.
    E. Raub, H. Beeskow and O. Loebich Jr., Z. Metallk., 54, 549 (1963).Google Scholar
  5. 5.
    A. Kussmann and K. Jessen, Z. Metallk., 54, 504 (1963).Google Scholar
  6. 6.
    H. Fujimori and H. Saito, J. Phys. Soc. Japan, 20, 293 (1965).CrossRefGoogle Scholar
  7. 7.
    B. S. Lement, B. I. Averbach and M. Cohen, Trans. ASM, 43, 1072 (1951).Google Scholar
  8. 8.
    G. F. Bolling and R. H. Richman, Phil. Mag., 19, 247 (1969).CrossRefGoogle Scholar
  9. 9.
    I. Y. Georgieva and O. P. Maksimova, Phys. Met. Metallogr., 24(3), 200(1967).Google Scholar
  10. 10.
    G. F. Bolling, A. Arrott and R. H. Richman, Phys. Stat. Sol., 26, 743 (1968).CrossRefGoogle Scholar
  11. 11.
    E. Adler and C. Radeloff, Z. Angew. Phys., 26, 105 (1969).Google Scholar
  12. 12.
    R. Caudron, J. J. Meunier and P. Costa, J. Phys. F, 4, 1791 (1974).CrossRefGoogle Scholar
  13. 13.
    R. Schulze, Z. Angew. Phys., 7, 57 (1955).Google Scholar
  14. 14.
    G. Pupke, Z. Phys. Chem., 207, 91 (1957).Google Scholar
  15. 15.
    Y. Tino and M. Kobayashi, J. Phys. Soc. Japan, 41, 59 (1976).CrossRefGoogle Scholar
  16. 16.
    H. Kagawa and S. Chikazumi, J. Phys. Soc. Japan, 43, 1097 (1977).CrossRefGoogle Scholar
  17. 17.
    Y. Shirakawa and I. Oguma, Sci. Rep. RITU, A-18S, 523(1966).Google Scholar
  18. 18.
    K. Honda, H. Masumoto, Y. Shirakawa and T. Kobayashi, J. Japan Inst. Metals, 12, 1 (1948).CrossRefGoogle Scholar
  19. 19.
    L. Patrick, Phys. Rev., 93, 384 (1954).CrossRefGoogle Scholar
  20. 20.
    J. M. Leger, C. Loriers-Susse and B. Vodar, Phys. Rev., B6, 4250 (1972).Google Scholar
  21. 21.
    Y. Tino and M. Kobayashi, J. Phys. Soc. Japan, 45, 1226 (1978).CrossRefGoogle Scholar
  22. 22.
    M. Shiga, Solid State Commun., 10, 1233 (1972).Google Scholar
  23. 23.
    W. B Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, New York, London (1967) 634.Google Scholar
  24. 24.
    Ch. Ed. Guillaume, Compt. Rend, 170, 1433(1920).Google Scholar
  25. 25.
    J. Kanamori, J. Phys., 35, C4–131(1974).Google Scholar
  26. 26.
    J. Kanamori, PHYSICS AND APPLICATIONS OF INVAR ALLOYS, ed. H. Saito, Maruzen Co. Ltd, Tokyo (1978) 221.Google Scholar
  27. 27.
    K. Fukamichi, J. Appl. Phys., 50, 6562 (1979).CrossRefGoogle Scholar
  28. 28.
    Y. Mashiyama, Sci. Re. RITU, 21. 394 (1932).Google Scholar
  29. 29.
    T. Nakayama, M. Kikuchi and K. Fukamichi, J. Phys. F, 10, 715 (1980).CrossRefGoogle Scholar
  30. 30.
    M. Kersten, Z. Phys., 85, 708 (1933).Google Scholar
  31. 31.
    R. M. Bozorth, Ferromagnetism, D. Van Nostrand, New York (1951) 684.Google Scholar

Copyright information

© Purdue Research Foundation 1982

Authors and Affiliations

  • K. Fukamichi
    • 1
  • M. Kikuchi
    • 1
    • 2
  • T. Nakayama
    • 1
    • 2
  1. 1.The Research Institute for Iron, Steel and Other MetalsTohoku UniversitySendai, 980Japan
  2. 2.The Research Institute of Electric and Magnetic AlloysSendai, 982Japan

Personalised recommendations