Advertisement

High Pressure and High Temperature Studies on Mercurous Chloride

  • Y. C. Venudhar
  • T. Ranga Prasad
  • Leela Iyengar
  • K. Satyanarayana Murthy
  • K. V. Krishna Rao

Abstract

Crystals of mercurous chloride (Hg2Cl2) possess a number of unusual and interesting physical properties.1 The crystal belongs to the space group I4/mmm (D 4h 17 ).2 The structure contains chains of linear Cl-Hg-Hg-Cl molecules parallel to the c-direction. The centers of the molecules of the nearest neighbor chains are displaced c/2 along c. The structure transforms to a phase of lower symmetry at low temperature whose structure is uncertain.3,4 Richter et al.5 studied the Raman spectra of mercurous chloride at room temperature and at pressures up to 16 kbar. They report that the changes in the Raman spectra may be explained on the basis of the change of structure similar to the structure changes at low temperatures. Rosasco et al.1 found by X-ray studies that at low temperatures there is essentially no change in the value of ‘c’, whereas ‘a’ reduces considerably. Hence it is thought desirable to undertake X-ray studies on mercurous chloride at high pressures and high temperatures. This paper gives an account of the preliminary results obtained.

Keywords

Raman Spectrum Mercurous Chloride Ferent Temperature Neighbor Chain Negative Thermal Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. J. Rosasco, H. S. Parker, R. S. Roth, R. A. Forman and W. S. Brower, J. Phys. C: Solid State Phys., 11: 35 (1978).CrossRefGoogle Scholar
  2. 2.
    R. W. G. Wycoff, Crystal Structure, Interscience, 2: 36 (1948).Google Scholar
  3. 3.
    C. Barta, A. A. Kaplyanskii, V. V. Kulakov and Y. F. Markhov, JETP Lett., 21: 54 (1975).Google Scholar
  4. 4.
    M. E. Boiko and A. A. Voilpolin, Sov. Phys. Solid State, 19: 1117 (1977).Google Scholar
  5. 5.
    P. W. Richter, P. T. T. Wong and E. Whalley, J. Chem. Phys., 67: 2348 (1977).CrossRefGoogle Scholar
  6. 6.
    T. Ranga Prasad, K. Satyanarayana Murthy, L. Iyengar and K. V. Krishna Rao, Pramana, 12: 523 (1979).CrossRefGoogle Scholar
  7. 7.
    K. V. Krishna Rao S. V. Nagender Naidu and L. Iyengar, J. Appl. Cryst., 6: 136 (1973).CrossRefGoogle Scholar
  8. 8.
    K. V. Krishna Rao, S. V. Nagender Naidu and P. L. N. Setty, Acta Cryst., 15: 528 (1962).CrossRefGoogle Scholar
  9. 9.
    P. W. Sparks and C. A. Swenson, Phys. Rev., 163: 779 (1967).CrossRefGoogle Scholar
  10. 10.
    R. H. Carr, R. D. McCammon and G. K. TThite, Phil. Mag., 12: 157 (1965).CrossRefGoogle Scholar
  11. 11.
    B. R. Lawn, Acta Crysta., 17: 1341 (1964).CrossRefGoogle Scholar
  12. 12.
    R. L. Barns, Mat. Res. Bull., 12: 327 (1977).CrossRefGoogle Scholar

Copyright information

© Purdue Research Foundation 1982

Authors and Affiliations

  • Y. C. Venudhar
    • 1
  • T. Ranga Prasad
    • 1
  • Leela Iyengar
    • 1
  • K. Satyanarayana Murthy
    • 1
  • K. V. Krishna Rao
    • 1
  1. 1.Department of Physics, University College of ScienceOsmania UniversityHyderabadIndia

Personalised recommendations