Isotropic Zero CTE Materials

  • G. F. Hawkins
  • E. G. Wolff


Stringent dimensional stability requirements are called for in present and future aerospace systems, components and structures. The availability of a zero coefficient of thermal expansion (CTE) material would help to solve numerous design and performance problems. At present the best materials are ULE, Zerodur, fused SiO2, Super Invar and some pseudo-isotropic graphite epoxy composites. All of these exhibit thermal strains (Δ L/L) in excess of 20–50 microinches per inch when cooled, for example, from room temperature to −250°C. Since immediate applications for a zero CTE material include mirror substrates, metering rods and optics supports, an optimum material should also be isotropic, dimensionally stable with time (under constant temperature and low stress levels) and exhibit as high a thermal conductivity as possible.


Thermal Expansion Measurement Niobium Pentoxide Microcracking Effect Thorium Fluoride Niobium Oxidation Film 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. C. McNamara et alia, “Materials for Large Space Optics, Phase I Final Technical Report,” AFML-TR-78–12 (1978)Google Scholar
  2. 2.
    S. R. Skaggs, “Zero and Low Coefficient of Thermal Expansion Polycrystalline Oxides,” Los Alamos Report No. LA-UR77–1307 and presented at. Int. Colloquium on Refractory Oxides, Odeillo, France (1977)Google Scholar
  3. 3.
    Y. S. Touloukian, R. K. Kirby, R. E. Taylor and T. Y. R. Lee, Thermophysical Properties of Matter-TPRC Data Series, Volumes 12 and13, (Thermal Expansion-Metallic Elements and Alloys, and Non metallic Solids /IFI/Plenum Press (1977)Google Scholar
  4. 4.
    W. R. Manning, O. Hunter, F. W. Calderwood and D. W. Stacy, “Thermal Expansion of Nb2O5. ” J. Am. Ceram. Soc. 55, pp. 342–347 (1972)CrossRefGoogle Scholar
  5. 5.
    L. G. Van Uitert et alia, “Physical Properties of Thorium Fluoride,” Met. Res. Bull, Vol. 11, pp 669–672 (1976)CrossRefGoogle Scholar
  6. 6.
    W. Ostertag, G. R. Fisher and J. P. Williams, “Thermal Expansion of Synthetic ß -Spodumene andß-SpodumeneSilica Solid Solutions,” J. Am. Ceram. Soc., 51, (11)Google Scholar
  7. 7.
    E. G. Wolff and S. A. Eselun, “Thermal Expansion of a Fused Quartz Tube in a Dimensional Stability Test Facility,” Rev. Sci. Instr., 50, (4), 502–506 (1979)CrossRefGoogle Scholar
  8. 8.
    L. Holliday and J. Robinson, “The Thermal Expansion of Composites Based on Polymers,” J. Mat. Sci., 8, 301–311 (1973)CrossRefGoogle Scholar
  9. 9.
    E. H. Kerner, “The Elastic and Thermal Elastic Properties of Composites Media, ” Proc. Roy. Soc. London, 69 B(8), pp 808–813 (1956)Google Scholar
  10. 10.
    G. D. Kidwell, J. H. Richardson and G. M. Wolten, “Thermal Expansion Measurements in the Nb2O5–5 System,” Aerospace Report TR-0172 (2250–40)-1, 15 December 1971Google Scholar
  11. 11.
    E. G. Wolff and S. A. Eselun, “Double Michelson Interferometer for Contactless Thermal Expansion Measurements,” SAMSO-TR-78–136 (1978); also pp 204–208 in “Interferometry,” SPIE Proceedings, Vol. 192 (1979)Google Scholar
  12. 12.
    D. L. Douglass, “The Thermal Expansion of Niobium Pentoxide and Its Effect on the Spalling of Niobium Oxidation Films, ” J. Less-Common Metals, 5, pp. 151–157 (1963)CrossRefGoogle Scholar
  13. 13.
    S. A. Eselun, H. Neubert and E. G. Wolff, “Microcracking Effects on Dimensional Stability,” 24th SAMPE Symposium; San Francisco, CA, May 8–10, 1979, pp 1299–1309Google Scholar

Copyright information

© Purdue Research Foundation 1982

Authors and Affiliations

  • G. F. Hawkins
    • 1
  • E. G. Wolff
    • 1
  1. 1.Aerospace CorporationEl SegundoUSA

Personalised recommendations