Behavioural Ecology of Cave-Dwelling Fishes

  • Jakob Parzefall


The ecological conditions in caves are characterised by two main factors: nearly all caves have complete darkness and more or less constant temperature. The animals found in this habitat form a heterogeneous assembly. Some animals use caves only occasionally to avoid unfavourable conditions outside. Others, such as bats, enter caves regularly to rest during the day and in winter. But there are also many species which live permanently in caves. Omitting all the different classifications (Vandel 1965) of cave-living animals, we can call these true cave-dwellers ‘troglobionts’. Their striking morphological differences in comparison with their epigean relatives concern the reduction of the eye dark pigmentation. These reduction phenomena can be observed in many groups of animals. The degree of reduction in different species studied seems to be connected with the phylogenetical age of cave colonisation (Wilkens 1982).


Behavioural Ecology Agonistic Behaviour Genital Region Attractive Female Cave Population 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barr, T.C. (1968) `Cave Ecology and the Evolution of Troglobites’, Evolutionary Biology, 2, 35–102CrossRefGoogle Scholar
  2. Bechler, D.L. (1983) `The Evolution of Agonistic Behavior in Amblyopsid Fishes’, Behavioral Ecology and Sociobiology, 12, 35–42CrossRefGoogle Scholar
  3. Berti, R. and Ercolini, A. (1979) `Aggressive Behaviour in the Anophthalmic Phreatic Fish Uegitglanis zammaranoi Gianferrari (Clariidae, Siluriformes)’, Monitore Zoologico Italiano, 13, 197Google Scholar
  4. Berti, R. and Thines, G. (1980) `Influence of Chemical Signals on the Topographic Orientation of the Cave Fish Caecobarbus geertsi Boulenger (Pisces, Cyprinidae)’, Experientia, 36, 1384–5CrossRefGoogle Scholar
  5. Brust-Burchards, H. (1980) `Das Aggressionsverhalten von Fischen. Eine vergleichende Betrachtung unter besonderer Berücksichtigung von Astyanax mexicanus’, Unveröff, Staatsexamensarbeit der Universität HamburgGoogle Scholar
  6. Bunning, E. (1973) The Physiological Clock, 3, Auflage Springer, BerlinGoogle Scholar
  7. Burchards, H. (in prep.) `Das Aggressionsverhalten von Bastarden oberirdisch und unterirdisch lebender Populationen des Salmlers Astyanax mexicanus (Pisces)’Google Scholar
  8. Burchards, H., Dölle, A. and Parzefall, J. `The Aggressive Behaviour of an Epigean Population of Astyanax mexicanus (Characidae, Pisces) and Some Observations of Three Subterranean Populations’, Behavioural Processes,in pressGoogle Scholar
  9. Cooper, J.E. and Kuehne, R.A. (1974) `Speoplatyrhinus poulsoni, a New Genus and Species of Subterranean Fish from Alabama’, Copeia, 1974, 486–93Google Scholar
  10. Culver, D.C. (1982) Cave Life. Evolution and Ecology. Harvard University Press, Cambridge Dölle, A. (1981) `Über Ablauf und Funktion des Aggressionsverhaltens von Astyanax exicanus (Characidae, Pisces) unter Berücksichtigung zweier Höhlenpopulationen,Unveröff, Diplomarbeit, Universität HamburgGoogle Scholar
  11. Dzwillo, M. (1984) `Regressive Evolution in der Phylogenese des Tierreiches’, Fortschritte in der Zoologischen Systematik und Evolutionsforschung, 3, 115–26Google Scholar
  12. Erckens, W. (1981) `The Activity Controlling Time-system in Epigean and Hypogean Populations of Astyanax mexicanus (Characidae, Pisces)’, Proceedings of the Eighth International Congress of Speleology, 2, 796–7Google Scholar
  13. Erckens, W. and Martin, W. (1982a) `Exogenous and Endogenous Control of Swimming Activity in Astyanax mexicanus (Characidae, Pisces) by Direct Light Response and by a Circadian Oscillator. I Analyses of the time-control systems of an Epigean River Population’, Zeitschrift für Naturforschung, 37c, 1253–65Google Scholar
  14. Erckens, W. and Martin, W. (1982b) `Exogenous and Endogenous Control of Swimming Activity in Astyanax mexicanus (Characidae, Pisces) by Direct Light Response and by a Circadian Oscillator. Il Features of Time-controlled Behaviour of a Cave Population and their Comparison to an Epigean Ancestral Form’, Zeitschrift für Naturforschung, 37c, 1266–73Google Scholar
  15. Erckens, W. and Weber, F. (1976) `Rudiments of an Ability for time Measurement in the Cavernicolous Fish Anoptichthys jordani Hubbs and Innes (Pisces, Characidae)’, Experientia, 32, 1297–9Google Scholar
  16. Ercolini, A., Berti, R. and Cianfanelli (1981) `Aggressive Behaviour in Uegitglanis zammaranoi Gianferrari (Clariidae, Siluriformes) an anophthalmic phreatic fish from Somalia’, Monitore Zoologico Italiano, 5, 39–56Google Scholar
  17. Gordon, M.S. and Rosen, D.E. (1962) `A Cavernicolous Form of the Poeciliid Fish Poecilia sphenops from Tabasco, Mexico’, Copeia, 1962, 360–8Google Scholar
  18. Jankowska, M. and Thines, G. (1982) `Etude Comparative de la Densité de Groupes de Poissons Cavernicoles et Epiges (Characidae, Cyprinidae, Clariidae)’ Behavioural Processes7, 281–94 Google Scholar
  19. Kosswig, C. (1948) `Genetische Beiträge zur Präadaptationstheorie’, Revue de Facultie des Science (Istambul) Series B, 5 176–209Google Scholar
  20. Kosswig, C. (1963) `Genetische Analyse konstruktiver und degenerativer Evolutionsprozesse’, Zeitschrift für zoologische Systematik und Evolutionsforschung, 1, 205–39CrossRefGoogle Scholar
  21. Lamprecht, G. and Weber, F. (1982) ‘A Test for the Biological Significance of Circadian Clocks: Evolutionary Regression of the Time Measuring Ability in Cavernicolous Animals’, in D. Mossakowski and G. Roth (eds), Environmental Adaptation and Evolution, Fischer Verlag, Stuttgart, pp. 151–78Google Scholar
  22. MacGinitie, G.E. (1939) `The Natural History of the Blind Goby Typhlogobius californiensis Steindacher’, American Midland Naturalist, 21, 489–505CrossRefGoogle Scholar
  23. Mitchell, R.W., Russel, W.H. and Elliot, W.R.,(1977) `Mexican Eyeless Characin Fishes, genus Astyanax; Environment, Distribution and Evolution’, Special Publications. The Museum of the Texas Tech. University, 12, 1–89Google Scholar
  24. Mohr, Ch. M. and Poulson, T.L. (1966): The Life of the Cave, McGraw-Hill, New York Partridge, B.L. and Pitcher, T.J. (1980) `The Sensory Basis of Fish Schools: Relative Roles of Lateral Line and Vision’, Journal of Comparative Physiology, 135, 315–25Google Scholar
  25. Parzefall, J. (1969) `Zur vergleichenden Ethologie verschiedener Mollienesia-Arten einschliesslich einer Höhlenform von M. sphenops’, Behaviour, 33, 1–36Google Scholar
  26. Parzefall, J. (1973) `Attraction and Sexual Cycle of Poeciliidae’, in J.H. Schröder (ed.), Genetics and Mutagenesis of Fish, Springer Verlag, Berlin, pp. 177–83CrossRefGoogle Scholar
  27. Parzefall, J. (1974): `Rückbildung aggressiver Verhaltensweisen bei einer Höhlenform von Poecilia sphenops (Pisces, Poeciliidae)’, Zeitschrift für Tierpsychologie, 35, 66–82CrossRefGoogle Scholar
  28. Parzefall, J. (1979) `Zur Genetik und biologischen Bedeutung des Aggressionsverhaltens von Poecilia sphenops (Pisces, Poeciliidae)’, Zeitschrift für Tierpsychologie, 50, 399–422CrossRefGoogle Scholar
  29. Parzefall, J. (1983) `Field Observation in Epigean and Cave Populations of Mexican Characid Astyanax mexicanusi(Pisces, Characidae)’ Mémoires de Biospéléologie, X, 171–6Google Scholar
  30. Peters, N., Peters, G., Parzefall, J. and Wilkens H. (1973) `Über degenerative und konstruktive Merkmale bei einer phylogenetisch jungen Höhlenform von Poecilia sphenops ( Pisces, Poeciliidae). Internationale Revue der gesamten Hydrobiologie, 58, 417–36Google Scholar
  31. Pfeiffer, W. (1963) ‘Vergleichende Untersuchung über die Schreckreaktion und den Schreckstoff der Ostariophysen’, Zeitschrift für vergleichende Physiologie, 47, 111–47CrossRefGoogle Scholar
  32. Pfeiffer, W. (1966) `Über die Vererbung der Schreckreaktion bei Astyanax (Characidae, Pisces)’, Zeitschrift für Vererbungslehre, 98, 97–105CrossRefGoogle Scholar
  33. Pfeiffer, W. (1977) `The Distribution of Fright Reaction and Alarm Substance Cells in Fishes’, Copeia, 1977, 653–65CrossRefGoogle Scholar
  34. Pitcher, T.J., Partridge, B.L. and Wardle, C.S. (1976) `A Blind Fish Can School’, Science, 194, 963–5CrossRefGoogle Scholar
  35. Poulson, T.L. (1963) `Cave Adaptation in Amblyopsid Fishes’, American Midland Naturalist, 70, 257–90CrossRefGoogle Scholar
  36. Poulson, T.L. (1969) `Population Size, Density and Regulation in Cave Fishes’, Actes of the Fourth International Congress of Speleology, Ljubljana, Yugoslavia, 4–5, 189–92Google Scholar
  37. Poulson, T.L. and Jegla, (1969) `Circadian Rhythms in Cave Animals’, Actes of the Fourth International Congress of Speleology, 4–5, Ljubljana, Yugoslavia, 193–5Google Scholar
  38. Poulson, T.L. and White, W.B. (1969) `The Cave Environment’, Science, 165, 971–81 Riedl, R. (1966) Biologie der Meereshöhlen, Parey Verlag, Hamburg, BerlinGoogle Scholar
  39. Romero, A. (1983) `Behavior in an `Intermediate’ Population of the Subterranean-dwelling Characid Astyanax fasciatus’, Environmental Biology of Fishes, 10, 203–8CrossRefGoogle Scholar
  40. Schemmel, Ch. (1977) `Zur Morphologie und Funktion der Sinnesorgane von Typhliasina pearsei (Hubbs) (Ophidioidea, Teleostei)’, Zoomorphologie, 87, 191–202CrossRefGoogle Scholar
  41. Schemmel, Ch. (1980) `Studies on the Genetics of Feeding Behaviour in the Cave Fish Astyanax mexicanus f. anoptichthys’, Zeitschrift für Tierpsychologie, 53, 9–22Google Scholar
  42. Schultz, R.J. and Miller, R.R. (1971) `Species of the Poecilia sphenops Complex in Mexico,Copeia, 1971, 282–90Google Scholar
  43. Senkel, S. (1983) `Zum Schwarmverhalten von Bastarden zwischen Fluss-und Höhlenpopulationen bei Astyanax mexicanus (Pisces, Characidae)’, Unveröff, Staatsexamensarbeit der Universität HamburgGoogle Scholar
  44. Thines, G. (1955) `Les Poissons Aveugles ( I ). Origine, Taxonomie, RépartitionGoogle Scholar
  45. Géographique, Comportment’, Annales de la Société Royale Zoologique de Belgique Thines, G. (1969) L’Évolution Regressive des Poissons Cavernicoles et Abyssaux,MassonGoogle Scholar
  46. Thines, G. and Legrain, J.M. (1973) `Effets de la Substance d’Alarme sur le Compartement des Poissons Cavernicoles A noptichthys jordani (Characidae) et Caecobarbus geertsi (Cyprinidae)’, Annales de Spéléologie, 28, 291–7Google Scholar
  47. Thines, G. and Weyers, M. (1978) `Réponses Locomotrices du Poisson Cavernicole Astyanax mexicanus (Pisces, Characidae) à des Signaux Périodiques et Apériodiques de Lumière et de Température’, International Journal of Speleology, 10, 35–55Google Scholar
  48. Vandel, A. (1965) Biospeleology, Pergamon Press, LondonGoogle Scholar
  49. Wilkens, H. (1972) `Über Präadaptationen für das Höhlenleben, untersucht am Laichverhalten ober-und unterirdischer Populationen des Astyanax mexicanus (Pisces)’, Zoologischer Anzeiger. 188, 1–11Google Scholar
  50. Wilkens, H. (1976) `Genotypic and Phenotypic Variability in Cave Animals. Studies on a Phylogenetically Young Cave Population of Astyanax mexicanus (Filippi) (Characidae, Pisces)’, Annales de Spéléologie, 31, 137–48Google Scholar
  51. Wilkens, H. (1982) `Regressive Evolution and Phylogenetic Age: the History of Colonization of Freshwaters of Yukatan by Fish and Crustacea’ Texas Memorial Museum Bulletin, 28, 237–43Google Scholar
  52. Wilkens, H. and Burns, R.J. (1972) `A New Anoptichthys Cave Population (Characidae, Pisces)’, Annales de Spéléologie, 27, 263–70Google Scholar
  53. Zeiske, E. (1971): ‘Ethologische Mechanismen als Voraussetzung für einen Übergang zum Höhlenleben. Untersuchungen an Kaspar-Hauser-Männchen von Poecilia sphenops (Pisces, Poeciliidae)’, Forma et Functio, 4, 387–93Google Scholar

Copyright information

© Tony J. Pitcher 1986

Authors and Affiliations

  • Jakob Parzefall

There are no affiliations available

Personalised recommendations