Advertisement

Superoxides of the Alkali and Alkaline Earth Metals

  • Il’ya Ivanovich Vol’nov
  • A. W. Petrocelli

Abstract

The reactions of alkali metals with oxygen are so extensive that most of the elements can be made to form not only higher oxygen compounds, in which the atomic ratio of oxygen to the metal is equal to one, i.e., peroxides, but also higher oxygen compounds in which the ratio is equal to two (superoxides) and even three (ozonides).

Keywords

Lattice Energy Liquid Ammonia Metallic Sodium Peroxide Compound Hydroperoxyl Radical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Kirk and O. Othmer. Encyclopedia of Chemical Technology, Vol. 10, New York, Interscience Encyclopedia (1953), p. 38.Google Scholar
  2. 2.
    J. Clarke. J. Am. Soc. Naval Engrs. 68: 105 (1956).Google Scholar
  3. 3.
    W. Schechter and R. Shakely. Handling andUse of the Alkali Metal, Advances in Chemistry, Ser. 19, ACS, Washington (1957), p. 124.Google Scholar
  4. 4.
    G. Minkoff. Frozen Free Radicals. Moscow, IL (1960).Google Scholar
  5. 5.
    D. J. Fabian. Seventh International Symposium on Combustion, London, Butter-worths (1958), p. 150.Google Scholar
  6. 6.
    G. J. Minkoff and C. Tipper. Chemistry of Combustion Reactions, London, Butterworths (1962).Google Scholar
  7. 7.
    A. J. B. Robertson. Trans. Faraday Soc. 48: 228 (1952).Google Scholar
  8. 8.
    S.N. Foner and R.L. Hudson. J. Chem. Phys. 21: 1608 (1953).Google Scholar
  9. 9.
    K. Ingold. J. Chem. Phys. 24: 360 (1956).Google Scholar
  10. 10.
    S.N. Foner and R.L. Hudson J. Chem. Phys. 21: 1374 (1953).Google Scholar
  11. 11.
    F.P. Losing and A.W. Tickner. J. Chem. Phys. 20: 907 (1952).Google Scholar
  12. 12.
    L. Kerwin and M. Coffin. Can. J. Phys. 36: 184 (1958).Google Scholar
  13. 13.
    A. Robertson. Applied Mass Spectrometry, Gos. Nauch.-Tekhn. Izd. Neftyanoy i Gornotoplivnoy Literatury, Moscow (1958), p. 116.Google Scholar
  14. 14.
    S.N. Foner and R.L. Hudson. J. Chem. Phys. 23: 1364 (1955).Google Scholar
  15. 15.
    S.N. Foner and R.L. Hudson. J. Chem. Phys. 36: 2681 (1962).Google Scholar
  16. 16.
    S.N. Foner and R.L. Hudson. J. Chem. Phys. 23:1974 (1955).Google Scholar
  17. 17.
    R. Klein and M. Scheer. J. Chem. Phys. 31: 278 (1959).Google Scholar
  18. 18.
    K.B. Harwey and N. Brown. J. Chem. Phys. 56: 745 (1959).Google Scholar
  19. 19.
    S. Siegel and L.H. Baum. J. Chem. Phys. 32: 1249 (1960).Google Scholar
  20. 20.
    J. Kroh, B.C. Green, and J.W.T. Spinks. J. Am. Chem. Soc. 83: 2201 (1961).Google Scholar
  21. 21.
    I.I. Skorokhodov and V.B. Golubev. Zh. Fiz. Khim. 36: 93 (1961).Google Scholar
  22. 22.
    E. Muschlitz and P.L. Bailey. J. Phys. Chem. 60: 681 (1956).Google Scholar
  23. 23.
    W. Schumb et al. Hydrogen Peroxide, Moscow, IL (1958).Google Scholar
  24. 24.
    A.D. Walsh. J. Chem. Soc. (1953), p. 2288.Google Scholar
  25. 25.
    S.N. Foner. Free Radicals in Inorganic Chemistry, Advances in Chemistry, Ser. 36, ACS, Washington (1962), p. 43.Google Scholar
  26. 26.
    P. Gray. Trans. Faraday Soc. 55: 408 (1959).Google Scholar
  27. 27.
    D.E. Milligan and M.E. Jacox. J. Chem. Phys. 38: 2627 (1963).Google Scholar
  28. 28.
    Catalysis, Investigation of Homogenic Processes, Moscow, IL (1957), p. 96.Google Scholar
  29. 29.
    A.O. Allen. Radiation Chemistry of Water and Its Solutions, Moscow, Gosatomizdat (1963). [Published in English by D. Van Nostrand, Princeton, New Jersey.]Google Scholar
  30. 30.
    J. Jortner and G. Stein. Bull. Res. Council Israel A6: 239–246 (1957).Google Scholar
  31. 31.
    E. Saito and B. H. J. Bielski. J. Am. Chem. Soc. 83: 4467 (1961).Google Scholar
  32. 32.
    J. Kroh. Can J. Chem. 46: 413 (1962).Google Scholar
  33. 33.
    P. Hartek. J. Chem. Phys. 22: 1746 (1954).Google Scholar
  34. 34.
    J. Thompson and J. Kleinberg. J. Am. Chem. Soc. 73: 1243 (1951).Google Scholar
  35. 35.
    Chem. Eng. News 31 (39): 4012 (1953).Google Scholar
  36. 36.
    A. Davidson and J. Kleinberg. J. Phys. Chem. 57: 571 (1953).Google Scholar
  37. 37.
    D. L. Schechter and J. Kleinberg. J. Am. Chem. Soc. 76: 3297 (1954).Google Scholar
  38. 38.
    I. I. Vol’nov and A.N. Shatunina. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk (1957), p. 762.Google Scholar
  39. 39.
    I. I. Vol’nov and A.N. Shatunina. Zh. Neorgan. Khim. 2: 257 (1959).Google Scholar
  40. 40.
    N.G. Vannerberg. Progress in Inorganic Chemistry, Vol. 4, New York, Interscience Publishers, Inc. (1962), p. 137.Google Scholar
  41. 41.
    I. A. Kazarnovskii. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk (1949), p. 221.Google Scholar
  42. 42.
    E. B. Schoene. Experimental Investigation on Hydrogen Peroxide, Moscow, Tip Isleneva (1875), p. 131.Google Scholar
  43. 43.
    R. de Forcrand. Compt. Rend. 150: 1399 (1910).Google Scholar
  44. 44.
    F. Haber and H. Sachse. Z. Phys. Chem. Bodenstein Festband (1931), p. 831.Google Scholar
  45. 45.
    I. I. Vol’nov and A.N. Shatunina. Zh. Neorgan. Khim. 4: 1491 (1959).Google Scholar
  46. 46.
    G.L. Cunningham. U.S. Patent 2908552 (1959).Google Scholar
  47. 47.
    N.G. Vannerberg. Progress in Inorganic Chemistry, Vol. 4, New York, Interscience Publishers, Inc. (1962), p. 133.Google Scholar
  48. 48.
    W. Schechter, H. Sisler, J. Thompson, and J. Kleinberg. J. Am. Chem. Soc. 70: 267 (1948).Google Scholar
  49. 49.
    W. Schechter, J. Thompson, and J. Kleinberg. J. Am. Chem. Soc. 71: 1816 (1949).Google Scholar
  50. 50.
    W. Stephanou, W. Schechter, and J. Kleinberg. J. Am. Chem. Soc. 71: 1819 (1949).Google Scholar
  51. 51.
    J. Kleinberg. Unfamiliar Oxidation States and Their Stabilization, University of Kansas Press, Lawrence (1950), p. 25.Google Scholar
  52. 52.
    Inorganic Syntheses, Vol. 4, New York, McGraw-Hill (1953), p. 82.Google Scholar
  53. 53.
    S.H. Cohen, I.L. Margrave, V. Shelar, and E.M. Montaban. lnorg. Nucl. Chem. 14: 301 (1960).Google Scholar
  54. 54.
    W.H. Schechter. U.S. Patent 2648596 (1953).Google Scholar
  55. 55.
    W.H. Schechter. Canadian Patent 505912 (1954).Google Scholar
  56. 56.
    I. A. Anderson and N. J. Clark. J. Phys. Chem. 67: 2135 (1963).Google Scholar
  57. 57.
    J.F. Bedinger, N.S. Gosh, and E.R. Marning. Threshold of Space, Proc. Conf. Chem. Astronomy, 1956, Pergamon Press (1957).Google Scholar
  58. 58.
    R. Sefton. French Patent 1179010 (1959).Google Scholar
  59. 59.
    A. Le Berre and P. Goasguen. Compt. Rend. 254: 1306 (1962).Google Scholar
  60. 60.
    J.E. Bennett, D.Y. Ingram, and D. Schonland. Proc. Phys. Soc. 69: 556 (1956).Google Scholar
  61. 61.
    E. Brame. J. Inorg. Nucl. Chem. 4: 90 (1957).Google Scholar
  62. 62.
    T.V. Rode and G.A. Gol’der. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk (1956), p. 299.Google Scholar
  63. 63.
    G.F. Carter and D.H. Templeton. J. Am. Chem. Soc. 75: 5247 (1953).Google Scholar
  64. 64.
    D.H. Templeton and C.H. Dauben. J. Am. Chem. Soc. 72: 2251 (1950).Google Scholar
  65. 65.
    G.S. Zhdanov and Z.V. Zvonkova. Dokl. Akad. Nauk SSSR 82: 743 (1952).Google Scholar
  66. 66.
    S.S. Todd. J. Am. Chem. Soc. 75: 1229 (1953).Google Scholar
  67. 67.
    A.B. Neiding and I. A. Kazarnovskii. Zh. Fiz. Khim. 24: 1407 (1950).Google Scholar
  68. 68.
    T. V. Rode. Dokl. Akad. Nauk SSSR, 90: 1077 (1953).Google Scholar
  69. 69.
    R.L. Tallmann. Dissertation Abstr. 20: 4293 (1960).Google Scholar
  70. 70.
    K.B. Yatsimirskii. Izv. VUZOV, Khim. i Khim. Tekhnol. 2: 480 (1959).Google Scholar
  71. 71.
    P.W. Gilles and J.L. Margrave. J. Phys. Chem. 60: 1333 (1956).Google Scholar
  72. 72.
    L. Brewer. Chem. Rev. 52: 6 (1953).Google Scholar
  73. 73.
    J. Coughlin. Bull. 542 Bureau of Mines, Washington (1954), p. 46.Google Scholar
  74. 74.
    J.L. Margrave. J. Chem. Educ. 32: 522 (1955).Google Scholar
  75. 75.
    S.H. Cohen and J.L. Margrave. Anal. Chem. 29: 1462 (1957).Google Scholar
  76. 76.
    A. Kh. Mel’nikov and T. P. Firsova. Zh. Neorgan. Khim. 4: 169 (1961).Google Scholar
  77. 77.
    E. Seyb and J. Kleinberg. Anal. Chem. 23: 115 (1951).Google Scholar
  78. 78.
    A. Kh. Mel’nikov and T.P. Firsova. Zh. Neorgan. Khim. 6: 2230 (1961).Google Scholar
  79. 78a.
    A. Meffert and H. Meier-Ewert. Z. Anal. Chem. 198: 325 (1963).Google Scholar
  80. 79.
    A.B. Tsentsiper and S.A. Tokareva. Zh. Neorgan. Khim. 6: 2474 (1961).Google Scholar
  81. 80.
    T. V. Rode and A.V. Zachatskaya. Zh. Neorgan. Khim. 5: 524 (1960).Google Scholar
  82. 81.
    T.V. Rode and G.K. Grishenkova. Zh. Neorgan. Khim. 5: 529 (1960).Google Scholar
  83. 82.
    T.V. Rode and G.A. Golder. Zh. Neorgan. Khim. 5: 535 (1960).Google Scholar
  84. 83.
    Hydrogen Peroxide and Peroxide Compounds, published by M. E. Pozin, Moscow, Goskhimizdat (1951).Google Scholar
  85. 84.
    H. Lux, Z. Anorg. Allgem. Chem. 298: 285 (1959).Google Scholar
  86. 85.
    F. Onuska. Chem. Zvesti 14: 459 (1960).Google Scholar
  87. 86.
    C.B. Jackson. U.S. Patent 2405580 (1946).Google Scholar
  88. 87.
    Mine Safety Appliance Co. British Patent 626644 (1946).Google Scholar
  89. 88.
    R. R, Miller, U.S. Patent 2414116 (1947).Google Scholar
  90. 88a.
    R.M. Boyard. Aerospace Med. 31: 407 (1960).Google Scholar
  91. 89.
    Mine Safety Appliance Co. British Patent 629406 (1949).Google Scholar
  92. 90.
    H. Ostertag and E. Rink. Compt. Rend. 234: 958 (1952).Google Scholar
  93. 91.
    M, I. Klyashtornyi. Zh. Prikl. Khim. 32: 337 (1959).Google Scholar
  94. 92.
    R. Kohlmt,;’er. Ann. Chim. 4: 1202 (1959).Google Scholar
  95. 93.
    L. Linemann and G. Tridot. Compt. Rend. 236: 1282 (1953).Google Scholar
  96. 94.
    I. A. Kazarnovskii and A.B. Neiding. Dokl. Akad. Nauk SSSR 86: 717 (1952).Google Scholar
  97. 95.
    A. W. Petrocelli and D. L. Kraus. J. Chem. Educ. 40: 146 (1963).Google Scholar
  98. 96.
    A. Le Berre. Compt. Rend. 252: 1341 (1961).Google Scholar
  99. 97.
    A. Le Berre. Bull. Soc. Chico. France (1961), p. 1543.Google Scholar
  100. 98.
    A. Le Berre. Bull. Soc. Chim. France (1962), p. 1682.Google Scholar
  101. 99.
    C. Kroger. Z. Anorg. Allgem. Chem. 253: 92 (1945).Google Scholar
  102. 100.
    F. Fischer and H. Ploetze. Z. Anorg. Allgem. Chem. 75: 30 (1912).Google Scholar
  103. 101.
    A. Kh. Mel’nikov and T.P. Firsova, Zh. Neorgan. Khim. 8: 560 (1963).Google Scholar
  104. 102.
    J. Weiss. Trans. Faraday Soc. 31: 673 (1935).Google Scholar
  105. 103.
    P. Selwood. Magnetochemistry, Moscow, IL (1958), p. 279. [Second rev. ed. published in English by Interscience Publishers, Inc., New York.]Google Scholar
  106. 104.
    T. V. Rode. Thesis Reports of the Third Conference on Physico-Chemical Analysis, Moscow, Izd. Akad. Nauk SSSR (1955), p. 110.Google Scholar
  107. 105.
    M. Blumenthal. Roczniki Chem. 12: 127 (1932).Google Scholar
  108. 105a.
    R. de Forcrand. Compt. Rend. 158: 991 (1914).Google Scholar
  109. 106.
    E, I. Sokovnin. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk (1963), p. 181.Google Scholar
  110. 107.
    V. Kasatochkin and V. Kotov. Zh. Tekhn. Fiz. 7: 1468 (1937).Google Scholar
  111. 108.
    A. Helms and W. Klemm. Z. Anorg. Allgem. Chem. 241: 97 (1939).Google Scholar
  112. 109.
    S.C. Abrahams and J. Kalnais. Acta Cryst. 8: 503 (1955).Google Scholar
  113. 110.
    I.A. Kazarnovskii and S.I. Raikhshtein. Zh. Fiz. Khim. 21: 245 (1947).Google Scholar
  114. 111.
    F. Halverson. Phys. Chem. Solids 23: 207 (1962).Google Scholar
  115. 112.
    C.F. Carter and J. L. Margrave. Acta Cryst. 5: 851 (1952).Google Scholar
  116. 112a.
    Science in World War II, OSRD Chemistry, edited by W.A. Noyes, Jr., Boston (1948), p. 363.Google Scholar
  117. 113.
    A. Kh. Mel’nikov and T.P. Firsova. Zh. Neorgan. Khim. 7: 1228 (1962).Google Scholar
  118. 114.
    E. Wyss-Dunant. Bull. Schweiz. Akad. Med. Wiss. 9: 221 (1953).Google Scholar
  119. 115.
    C.B. Jackson, H.C. Beam, and A. Van Andel. U.S. Patent 2494131 (1950).Google Scholar
  120. 116.
    C.B. Jackson and A. Van Andel. U.S. Patent 2517209 (1950).Google Scholar
  121. 117.
    R.M. Bovard. U.S. Patent 2889210 (1959).Google Scholar
  122. 118.
    R.M. Bovard. U.S. Patent 2913317 (1959).Google Scholar
  123. 118a.
    R.M. Bovard. U.S. Patent 2758015 (1956).Google Scholar
  124. 118b.
    D.K. Dieterly et al. C.A. 59: 13577 (1963).Google Scholar
  125. 119.
    I.I. Vol’nov, E. I. Sokovnin, V.V. Matveev. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk (1962), p. 1127.Google Scholar
  126. 120.
    E. Seyb and J. Kleinberg. J. Am. Chem. Soc. 73: 2308 (1961).Google Scholar
  127. 121.
    M. Schmidt and H. Bipp. Z. Anorg. Allgem. Chem. 303: 190 (1960).Google Scholar
  128. 122.
    M. Schmidt and H. Bipp. Z. Anorg. Allgem. Chem. 303: 201 (1960).Google Scholar
  129. 123.
    P.A. Giguère and K.B. Harvey. J. Am. Chem. Soc. 76: 5891 (1954).Google Scholar
  130. 124.
    D. I. Mendeleev. Principles of Chemistry, Pt. 2, 2nd Edition, St. Petersburg, 1871, Works, Vol. 14, Moscow, Izd. Akad. Nauk SSR (1949), p. 78.Google Scholar
  131. 125.
    N.G. Vannerberg. Progress in Inorganic Chemistry, Vol. 4. New York, Interscience Publishers, Inc. (1962), p. 128.Google Scholar
  132. 126.
    A. Helms and W. Klemm. Z. Anorg. Allgem. Chem. 242: 201 (1939).Google Scholar
  133. 127.
    D.L. Kraus and A.W. Petrocelli. Dissertation Abstr. 21: 1081 (1960).Google Scholar
  134. 128.
    F. Kuhbier. Beiträge zur Kenntnis der Peroxyde und Tetraoxyde des Rubidiums, Caesiums und Tetrametilammoniums, Dissertation, Berlin(1929).Google Scholar
  135. 129.
    E. Rengade. Bull. Soc. Chim. Paris 35 (3): 769 (1906).Google Scholar
  136. 130.
    E. Rengade. Compt. Rend., 142: 1150 (1906).Google Scholar
  137. 131.
    E. Rengade. Ann. Chim. Phys. 11 (6): 348 (1907).Google Scholar
  138. 132.
    I.I. Vol’nov and V.V. Matveev. Zh. Prikl. Khim. (in press).Google Scholar
  139. 133.
    P.G. Borisyak. Zh. Tekhn. Fiz. 20: 928 (1950).Google Scholar
  140. 134.
    M. Centnerszwer and M. Blumenthal. Bull. Acad. Pol. 1933(A):498.Google Scholar
  141. 134a.
    G. V. Morris. Dissertation Abstr. 23: 2343 (1963).Google Scholar
  142. 135.
    L.I. Kazarnovskaya. Zh. Fiz. Khim. 20: 1403 (1946).Google Scholar
  143. 136.
    I.I. Vol’nov and V.V. Matveev. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk (1963), p. 1136.Google Scholar
  144. 137.
    S.A. Shchukarev. Zh. Obshch. Khim. 28: 857 (1958).Google Scholar
  145. 138.
    I.A. Kazarnovskii. Zh. Fiz. Khim. 14: 333 (1940).Google Scholar
  146. 139.
    E. Seyb and J. Kleinberg. J. Am. Chem. Soc. 73: 2308 (1951).Google Scholar
  147. 140.
    I. I. Vol’nov and A.N. Shatunina. Dokl. Akad. Nauk SSSR 110: 87 (1956).Google Scholar
  148. 141.
    D. Baumann. Iowa State Coll. J. Sci. 28: 280 (1954).Google Scholar
  149. 142.
    I. I. Vol’nov, V.N. Chamova, and V. P. Sergeeva. Zh. Neorgan. Khim. 1: 1937 (1956).Google Scholar
  150. 143.
    1. Vol’nov and V. N. Chamova. Zh. Neorgan. Khim. 2: 263 (1957).Google Scholar
  151. 144.
    I. I. Vol’nov and E. I. Latysheva. Zh. Neorgan. Khim. 2: 259 (1957).Google Scholar
  152. 145.
    I. I. Vol’nov and E. I. Latysheva. Zh. Neorgan. Khim. 2: 1697 (1957).Google Scholar
  153. 146.
    R.S. Johnston, E.D. Osgood, and R.R. Miller. Anal. Chem. 30: 511 (1958).Google Scholar
  154. 147.
    I. I. Vol’nov and E. I. Latysheva. Zh. Analit. Khim. 14:242 (1959)Google Scholar
  155. 148.
    I. I. Vol’nov and V. N. Chamova. Zh. Neorgan. Khim. 3: 1098 (1958).Google Scholar
  156. 149.
    I.I. Vol’nov and V.N. Chamova. Zh. Neorgan. Khim. 4: 253 (1959).Google Scholar
  157. 150.
    I. I. Vol’nov and V. N. Chamova. Zh. Neorgan. Khim. 3: 1095 (1958).Google Scholar
  158. 151.
    I. I. Vol’nov and V.N. Chamova. Zh. Neorgan. Khim. 5: 522 (1960).Google Scholar
  159. 152.
    C. Brosset and N.G. Vannerberg. Nature 177: 238 (1956).Google Scholar
  160. 153.
    I. I. Vol’nov and A.N. Shatunina. Zh. Neorgan. Khim. 2: 1474 (1957).Google Scholar
  161. 154.
    K. V. Astakhov and A.G. Getsov. Dokl. Akad. Nauk SSSR 81: 43 (1951).Google Scholar
  162. 155.
    J.S. Hashmann. U.S. Patent 3119665 (1964).Google Scholar
  163. 156.
    M. Centnerszwer and T. Trebaczkiewitz. Z. Phys. Chem. 165: 367 (1933).Google Scholar
  164. 157.
    M.S. Skanavi-Grigor’eva and A. N. Staroverova. Zh. Obshch. Khim. 28: 1689 (1958).Google Scholar
  165. 158.
    N.G. Vannerberg. Arkiv Kemi 14: 100 (1959).Google Scholar
  166. 159.
    N. G. Vannerberg. Arkiv Kemi 10: 455 (1957).Google Scholar
  167. 160.
    N.G. Vannerberg. Arkiv Kemi 14: 119 (1959).Google Scholar
  168. 161.
    N.A. Shishakov. Zh. Fiz. Khim. 31: 37 (1957).Google Scholar

Copyright information

© Plenum Press 1966

Authors and Affiliations

  • Il’ya Ivanovich Vol’nov
    • 1
  • A. W. Petrocelli
    • 2
  1. 1.Laboratory of Peroxide Chemistry, N. S. Kurnakov Institute of General and Inorganic ChemistryAcademy of Sciences of the USSRMoscowUSSR
  2. 2.General Dynamics/Electric Boat DivisionChemistry and Chemical Engineering SectionGrotonUSA

Personalised recommendations