Advertisement

Peroxides of the Group Two Elements of the Periodic Table

  • Il’ya Ivanovich Vol’nov
  • A. W. Petrocelli

Abstract

All elements of the second group, with the exception of beryllium [1], form peroxide compounds. Peroxides of calcium, strontium, and barium belong to the M2+O2 2- type; while peroxides of magnesium, zinc, and cadmium, of general formula MO2 • xH2O, probably belong to the HO—M—OOH type where the covalent bond between the hydroperoxyl group and the metal atom is the same as that in the hydrogen peroxide molecule [2–4]. Radium peroxide, RaO2, the heat of formation of which is estimated as 150 kcal/mole [5], has not yet been produced.

Keywords

Hydrogen Peroxide Solution Heating Curve Barium Oxide Barium Nitrate Peroxide Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. I. Volnov. Izv. Sektora Fiz.-Khim. Analiza 26: 211 (1955).Google Scholar
  2. 2.
    I. I. Volnov. Dokl. Akad. Nauk SSSR 94: 477 (1954).Google Scholar
  3. 3.
    I. I. Volnov. Zh. Neorgan. Khim. 3: 538 (1958).Google Scholar
  4. 4.
    L. V. Ladeinova. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk (1959), p. 195.Google Scholar
  5. 5.
    A. F. Kapustinskii. Izv. Akad. Nauk. SSSR, Otd. Khim. Nauk (1948), p. 586.Google Scholar
  6. 6.
    I. I. Volnov, V.N. Chamova, V.P. Sergeeva, and E. I. Latysheva. Zh. Neorgan. Khim. 1: 1937 (1956).Google Scholar
  7. 7.
    H. Kobayashi. Japanese Patent 175368 (1947).Google Scholar
  8. 8.
    J.H. Young. U.S. Patent 2533660 (1950).Google Scholar
  9. 9.
    Hydrogen Peroxide and Peroxide Compounds, edited by M. E. Pozin, Moscow, Goskhimizdat (1951).Google Scholar
  10. 10.
    R. Kirk and D. Othmer. Encyclopedia of Chemical Technology, Vol. 10, New York, The Interscience Encyclopedia (1953), p. 28.Google Scholar
  11. 11.
    V.W. Slater. Chem. Ind. 5: 45 (1945).Google Scholar
  12. 12.
    R.S. Shineman and A. J. King. Acta Cryst. 4: 67 (1951).CrossRefGoogle Scholar
  13. 13.
    S.Z. Makarov and N. K. Grigoreva. Zh. Prikl. Khim. 32: 2184 (1959).Google Scholar
  14. 14.
    S. Z. Makarov and N.K. Grigoreva. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk (1954), p. 385.Google Scholar
  15. 15.
    S. Z. Makarov and N. K. Grigoreva. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk (1958), p. 1289.Google Scholar
  16. 16.
    V. N. Chamova and V.P. Sergeeva. Zh. Neorgan. Khim. 2: 1938 (1957).Google Scholar
  17. 17.
    S Z Makarov and N. K. Grigoreva. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk (1954), p. 598.Google Scholar
  18. 18.
    H. Hahn. Z. Anorg. Allgem. Chem. 275: 35 (1954).Google Scholar
  19. 19.
    D. Schechter and J. Kleinberg. J. Am. Chem. Soc. 76: 3297 (1954).CrossRefGoogle Scholar
  20. 20.
    Ch. N. Satterfield and T. W. Stein. Ind. Eng. Chem. 46: 1734 (1954).CrossRefGoogle Scholar
  21. 21.
    B.D. Averbukh and G.I. Chufarov. Zh. Obshch. Khim. 21: 629 (1951).Google Scholar
  22. 22.
    B. D. Averbukh. Candidate Dissertation, Sverdlovsk, UFAN (1948).Google Scholar
  23. 23.
    Ya. S. Rubinchik. Candidate Dissertation, Minsk, BGU (1953).Google Scholar
  24. 24.
    M. M. Pavlyuchenko and Ya. S. Rubinchik. Zh. Fiz. Khim. 32: 848 (1958).Google Scholar
  25. 25.
    C. Brosset and N.G. Vannerberg. Nature 177 (501): 236 (1956).CrossRefGoogle Scholar
  26. 26.
    I. I. Volnov and A.N. Shatunina. Zh. Neorgan. Khim. 2: 1474 (1957).Google Scholar
  27. 27.
    H. Föppl. Z. Anorg. Allgem. Chem. 291: 46 (1957).CrossRefGoogle Scholar
  28. 28.
    L. Brewer. Chem. Rev. 52: 6 (1953).CrossRefGoogle Scholar
  29. 29.
    V. Latimer. Oxidation State of Elements, Moscow, IL (1954).Google Scholar
  30. 30.
    A.B. Neiding and I. A. Kazarnovskii. Dokl. Akad. Nauk SSSR 78: 713 (1951).Google Scholar
  31. 31.
    M.M. Pavlyuchenko and Ya. S. Rubinchik. Zh. Neorgan. Khim. 4: 50 (1959).Google Scholar
  32. 32.
    N.N. Murach and V. K. Kulifeev. Izv. VUZOV, Nonferrous Metallurgy, No. 6: 64 (1958).Google Scholar
  33. 33.
    N.G. Vannerberg. The Formation and Structure of Peroxy Compounds of Group IIa and IIb Elements, Göteborg, Uppsala, Almqvist (1959).Google Scholar
  34. 34.
    I. I. Volnov, V. N. Chamova, and E. I. Latysheva. Zh. Neorgan. Khim. 2: 263 (1957).Google Scholar
  35. 35.
    I. I. Volnov and V.N. Chamova. Zh. Neorgan. Khim. 3: 1098 (1958).Google Scholar
  36. 36.
    I.I. Volnov, V. N. Chamova and V.P. Sergeeva. Zh. Neorgan. Khim. 4: 253 (1959).Google Scholar
  37. 37.
    V.A. Lunenok-Burmakina and A. P. Potemskaya. Ukr. Khim. Zh. 28: 48 (1962).Google Scholar
  38. 38.
    W. Hundt and K. Wieweg. Seifen-Oele-Fette-Wachse 81: 419, 444 (1955).Google Scholar
  39. 39.
    J. Barber and B. Kennedy. Cereal Chem. 35: 201 (1958).Google Scholar
  40. 40.
    Ch. N. Satterfield. Ind. Eng. Chem. 46: 1007 (1954).Google Scholar
  41. 41.
    G. Cook. Canadian Patent 508635 (1954).Google Scholar
  42. 42.
    Air Liquide, French Patent 1256598 (1960).Google Scholar
  43. 43.
    A.K. Dunlop and D.R. Douslin. U.S. Patent 2695217 (1954).Google Scholar
  44. 44.
    A. Lefevre. French Patent 1032708 (1953).Google Scholar
  45. 45.
    R.L. Zapp. U.S. Patent 2666753 (1954).Google Scholar
  46. 46.
    R.L. Zapp. J. Polymer Sci. 9: 97 (1952).CrossRefGoogle Scholar
  47. 46a.
    D. R. Glasson. J. Appl. Chem. 13: 111 (1963).CrossRefGoogle Scholar
  48. 47.
    Chem. Eng. News 37 (26): 56 (1959).Google Scholar
  49. 48.
    N. J. Rentschler. U.S. Patent 2415443 (1947).Google Scholar
  50. 49.
    N. J. Rentschler. Swedish Patent 147004 (1954).Google Scholar
  51. 50.
    N.G. Vannerberg. Arkiv Kemi 14: 17 (1959).Google Scholar
  52. 51.
    C.B. Holtermann. Ann. Chim. 14: 121 (1940).Google Scholar
  53. 52.
    S. Z. Makarov and T. I. Arnold. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk (1958), p. 1407.Google Scholar
  54. 53.
    S.Z. Makarov and T. I. Arnold. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk (1959), p. 774.Google Scholar
  55. 54.
    N.G. Vannerberg. Arkiv Kemi 14: 107 (1959).Google Scholar
  56. 55.
    I. I. Vol’nov and E.I. Latysheva. Zh. Neorgan. Khim. 2: 259 (1957).Google Scholar
  57. 56.
    N.G. Vannerberg. Acta Cryst. 10: 778 (1957).Google Scholar
  58. 57.
    N.G. Vannerberg. Arkiv Kemi 13: 29 (1958).Google Scholar
  59. 58.
    A. V. Vedeneev, L.I. Kazarnovskaya, and I. A. Kazarnovskii. Zh. Fiz. Khim. 26: 1808 (1952).Google Scholar
  60. 59.
    L.I. Kazarnovskaya. Zh. Fiz. Khim. 20: 1408 (1946).Google Scholar
  61. 59a.
    M. M. Pavlyuchenko and T.I. Popova. Dokl. Akad. Nauk BSSR 7: 456 (1963).Google Scholar
  62. 60.
    B.F. Clay and R.A. Sahlin. U. S. Patent 2709129 (1955).Google Scholar
  63. 61.
    T. Stevenson and W. Cavell. U. S. Patent 2823205 (1958).Google Scholar
  64. 62.
    A. N. Volskii. Proceedings of the United Nations International Conference on Peaceful Uses of Atomic Energy, Vol. 28, Geneva (1958), p. 170.Google Scholar
  65. 63.
    W. Schumb et al. Hydrogen Peroxide, Moscow, IL (1958).Google Scholar
  66. 64.
    H.H. Hoekje. U.S. Patent 2805128 (1957).Google Scholar
  67. 65.
    P.O. Stelling, E. Angel, and H. Mattson. Swedish Patent 164381 (1958).Google Scholar
  68. 66.
    I.A. Kazarnovskii. The Eighth Mendeleev Meeting on General and Applied Chemistry, Vol. 1, Moscow, Izd. Akad. Nauk SSSR (1959), p. 17.Google Scholar
  69. 67.
    L.A. Isarov. Chemistry of Peroxide Compounds, Moscow, Izd. Akad. Nauk SSSR (1963), p. 103.Google Scholar
  70. 68.
    S. Z. Makarov and N. K. Grigoreva. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk (1959), p. 9.Google Scholar
  71. 69.
    S. Z. Makarov and N. K. Grigoreva. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk (1959), p. 1163.Google Scholar
  72. 70.
    A. Marczewski. Polish Patent 43919 (1960).Google Scholar
  73. 71.
    T.B. Pierce. U. S. Patent 2066015 (1937).Google Scholar
  74. 72.
    E. von Drathen and H. Walther. Chem. Ztg. 65: 119 (1941).Google Scholar
  75. 72a.
    N.G. Vannerberg. In: Progress in Inorganic Chemistry, Vol. 4, New York, Interscience Publishers, Inc. (1962), p. 162.CrossRefGoogle Scholar
  76. 73.
    S. Abrakhams. Usp. Khim. 27: 107 (1958).Google Scholar
  77. 74.
    N. G. Vannerberg. Arkiv Kemi 14: 147 (1959).Google Scholar
  78. 75.
    N.G. Vannerberg. Arkiv Kemi 14: 125 (1959).Google Scholar
  79. 76.
    I. I. Volnov and E.I. Latysheva. Zh. Neorgan. Khim. 2’1696 (1957).Google Scholar
  80. 77.
    S.C. Abrahams and J. Kalnais. Acta Cryst. 7: 839 (1954).Google Scholar
  81. 78.
    K. Savithri and S. Ramanchandra Rao. Proc. Indian Acad. Sci. 16A: 221 (1942).Google Scholar
  82. 79.
    C. Kroger and W. Janetzke. Z. Anorg. Allgem. Chem. 284: 83 (1956).CrossRefGoogle Scholar
  83. 80.
    A. V. Vedeneev and S.M. Skuratov. Zh. Fiz. Khim. 25: 839 (1951).Google Scholar
  84. 81.
    J.P. Coughlin. Bull. 542 Bureau of Mines, Washington (1954), p. 11.Google Scholar
  85. 82.
    I. I. Volnov and A.N. Shatunina. Dokl. Akad. Nauk SSSR 110: 87 (1956).Google Scholar
  86. 83.
    V.T. Oza. J. Indian Chem. Soc. 33: 875 (1956).Google Scholar
  87. 84.
    J.E. Spice and L. Stavenley. J. Soc. Chem. Ind. 68: 314, 348 (1949).CrossRefGoogle Scholar
  88. 85.
    R. Hill, L. Sutton, R. Temple, and B. White. Research (London) 3: 572 (1950).Google Scholar
  89. 85a.
    L.B. Johnson, Jr., Ind. Eng. Chem. 52: 137 (1960).CrossRefGoogle Scholar
  90. 86.
    F. Booth. Trans. Faraday Soc. 49: 272 (1953).CrossRefGoogle Scholar
  91. 87.
    G. Huttig. Monatsh. Chem. 85: 976 (1954).CrossRefGoogle Scholar
  92. 88.
    V. Hogan and S. Gordon. J. Phys. Chem. 61: 1401 (1957).CrossRefGoogle Scholar
  93. 89.
    K. Hauff. Reactions in Solid Bodies and on Their Surfaces, Pt. 2, Moscow, IL (1963), p. 183.Google Scholar
  94. 90.
    R. Scholder and W. Klemm. Angew. Chem. 66: 461 (1954).CrossRefGoogle Scholar
  95. 91.
    V.B. Glushkova and O.K. Keler. Zh. Neorgan. Khim. 2: 1001 (1957).Google Scholar
  96. 92.
    V. B. Glushkova. Zh. Neorgan. Khim. 2: 2438 (1957).Google Scholar
  97. 93.
    H. Fredenhagen. Z. Anorg. Chem. 242: 23 (1939).Google Scholar
  98. 94.
    Phillips Petroleum Co. British Patent 790195 (1958).Google Scholar
  99. 95.
    H.F. Park. U. S. Patent 2664416 (1958).Google Scholar
  100. 96.
    N. Ven Kataraman. Current Sci. 21: 9 (1952).Google Scholar
  101. 97.
    E. Costa Novella. An. Real Soc. Esp. Fis. Quim. 54B: 61 (1958).Google Scholar
  102. 98.
    A. Brengle and H. Stewart. U. S. Patent 2709134 (1955).Google Scholar
  103. 99.
    J. Nevinson and R. Lincoln. U. S. Patent 2491057 (1949).Google Scholar
  104. 100.
    S. G. Stewart. U. S. Patent 2719130 (1955).Google Scholar
  105. 101.
    L.E. Olson. U. S. Patent 2563481 (1951).Google Scholar
  106. 102.
    W. N. Marshall. U. S. Patents 2573442 (1951); 2583584 (1952).Google Scholar
  107. 103.
    W. Hanford. U. S. Patent 2874142 (1959).Google Scholar
  108. 104.
    Chem. Ztb. 126: 1888 (1955).Google Scholar
  109. 105.
    R.H. Heyskell. U. S. Patents 2726943 (1955); 2714061 (1955).Google Scholar
  110. 106.
    R.H. Heyskell. U.S. Patent 2726694 (1955).Google Scholar
  111. 107.
    R.H. Heyskell. U.S. Patent 2899291 (1959).Google Scholar
  112. 108.
    T. Toshima. Japanese Patent 8498 (1955).Google Scholar
  113. 109.
    D. Pearsale. U. S. Patent 2909418 (1959).Google Scholar
  114. 110.
    D.T. Zebree. U. S. Patent 2892695 (1959).Google Scholar
  115. 111.
    M. Yamada and J. Yonezawa. Kogyo Kayaky Kyokaishi 19: 118 (1958).Google Scholar
  116. 112.
    W.E. Schulz. U. S. Patent 2882819 (1959).Google Scholar
  117. 113.
    B. Carr. Canadian Patent 494258 (1954).Google Scholar
  118. 114.
    L.B. Johnson, Jr. Ind. Eng. Chem. 52: 868 (1960).Google Scholar
  119. 115.
    K. Winnacker and E. Weingarten. Chemische Technologie, Vol. 1, München Hanser Verlag (1950), p. 550.Google Scholar
  120. 116.
    C. Weissenberg. U. S. Patent 2763559 (1956).Google Scholar
  121. 117.
    C. W. Becker. U. S. Patent 2559530 (1951).Google Scholar
  122. 118.
    G. Telefunken. British Patent 805880 (1958).Google Scholar
  123. 119.
    A.A. Sheperd. Nature 170: 839 (1952).CrossRefGoogle Scholar
  124. 120.
    P. Hangelston and R. Ives. U. S. Patent 2545695 (1951).Google Scholar
  125. 121.
    P. Delzien and A. Claude. U. S. Patent 2677623 (1954).Google Scholar
  126. 122.
    P. Delzien and R. Penon. Le Vide 9: 257 (1954).Google Scholar
  127. 123.
    E. Oldal and F. Nasel. Austrian Patent 202235 (1959).Google Scholar
  128. 124.
    O. Weirich. U. S. Patent 2868736 (1959).Google Scholar
  129. 125.
    J. Smith. British Patent 688761 (1953).Google Scholar
  130. 126.
    B. King. British Patent 969023 (1959).Google Scholar
  131. 127.
    M.M. Kushnir. Ukr. Khim. Zh. 27: 542 (1961).Google Scholar
  132. 128.
    Chim. Ind. Lombarda. Italian Patent 464533 (1951).Google Scholar
  133. 129.
    P.I. Sadovskii. Zavodskaya Lab. 8: 1184 (1939).Google Scholar
  134. 130.
    A.D. Brandt. Heating and Ventilation 43: 67 (1946).Google Scholar
  135. 131.
    Yu. V. Karyakin and I. I. Angelov. Pure Chemical Reagents, Moscow, Goskhimizdat (1955).Google Scholar
  136. 132.
    S.Z. Makarov and I. I. Volnov. Izv.Akad.Nauk SSSR, Otd. Khim. Nauk (1954), p. 765.Google Scholar
  137. 133.
    N.G. Vannerberg. Arkiv Kemi 14: 100 (1959).Google Scholar
  138. 134.
    F. Hinz. U.S. Patent 2091129 (1935).Google Scholar
  139. 135.
    I.I. Volnov and E.I. Latysheva. Zh. Prikl. Khim. 31: 1597 (1958).Google Scholar
  140. 136.
    S. Z. Makarov and L. V. Ladeinova. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk (1957), p. 3.Google Scholar
  141. 137.
    V. F. Boiko. Scientific Reports of Higher Educational Establishment, Khim. i Khim. Tekhnol. 1: 57 (1959).Google Scholar
  142. 138.
    V. F. Boiko. Izv. VUZOV, Khim. i Khim. Tekhnol. 5: 351 (1962).Google Scholar
  143. 139.
    S. Z. Makarov and L. V. Ladeinova. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk (1957), p. 139.Google Scholar
  144. 140.
    N.G. Vannerberg. Arkiv Kemi 14: 2119 (1959).Google Scholar
  145. 140a.
    D.E. Wilcox and J. A. Bromley. Ind. Eng. Chem. 55: 26 (1963).CrossRefGoogle Scholar
  146. 140b.
    R.C. Ropp and M.A. Aia. Anal. Chem. 34: 1288 (1962).CrossRefGoogle Scholar
  147. 141.
    S. Z. Makarov and L. V. Ladeinova. Zh. Neorgan. Khim. 1: 2708 (1956).Google Scholar
  148. 142.
    W.S. Wood. U.S. Patent 2563442 (1951).Google Scholar
  149. 143.
    C.A. 42:5787 (1952).Google Scholar
  150. 144.
    R.S. Shelton. U. S. Patent 2436673 (1948).Google Scholar
  151. 145.
    L. Harbisson. U. S. Patent 2582829 (1952).Google Scholar
  152. 146.
    E.L. Warrik. U. S. Patent 2718512 (1955); West German Patent 937256 (1955).Google Scholar
  153. 147.
    H. Hock, H. Knopf, and E. Ernst. Angew. Chem. 71: 541 (1959).CrossRefGoogle Scholar
  154. 148.
    M.H. Abraham. J. Chem. Soc. (1960), p. 4130.Google Scholar
  155. 149.
    M. H. Abraham. Chem. Ind. 25: 750 (1959).Google Scholar
  156. 150.
    N.G. Vannerberg. Arkiv Kemi 10: 455 (1957).Google Scholar
  157. 151.
    C. Hoffman and R. Kopp. J. Am. Chem. Soc. 81: 3830 (1959).CrossRefGoogle Scholar
  158. 152.
    L. V. Ladeinova. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk (1961), p. 12.Google Scholar
  159. 153.
    V.F. Boyko. Izv. VUZOV, Khim. i Khim. Tekhnol. 4: 171 (1961).Google Scholar
  160. 154.
    A.G. Davies and J.E. Packer. Chem. Ind. (1958), p. 1177.Google Scholar
  161. 155.
    A.G. Davies and J.E. Packer. J. Chem. Soc. (1959), p. 3164.Google Scholar
  162. 156.
    A. Karnojitzki. Chim. hid. 85: 160 (1961).Google Scholar
  163. 157.
    P. Pierron. Bull. Soc. Chim. (1950), p. 291.Google Scholar
  164. 158.
    N.G. Vannerberg. Arkiv Kemi 13: 515 (1959).Google Scholar

Copyright information

© Plenum Press 1966

Authors and Affiliations

  • Il’ya Ivanovich Vol’nov
    • 1
  • A. W. Petrocelli
    • 2
  1. 1.Laboratory of Peroxide Chemistry, N. S. Kurnakov Institute of General and Inorganic ChemistryAcademy of Sciences of the USSRMoscowUSSR
  2. 2.General Dynamics/Electric Boat DivisionChemistry and Chemical Engineering SectionGrotonUSA

Personalised recommendations