Advertisement

Peroxides of the Group One Metals of the Periodic Table

  • Il’ya Ivanovich Vol’nov
  • A. W. Petrocelli

Abstract

All alkali metals form peroxides. The peroxides of all the alkali metals, with the exception of lithium, can be synthesized by direct oxidation of the metal with oxygen at atmospheric pressure. The reactivities of sodium, potassium, rubidium, and cesium result from the fact that these metals have large atomic radii and low ionization potentials. Lithium does not share such properties and, consequently, lithium peroxide can be synthesized only by the reaction of lithium hydroxide with hydrogen peroxide solutions. Methods for the synthesis of alkali metal peroxides have been known for a long time. In recent years, research has been directed toward the improvement of these methods and toward more precise determinations of the properties and structure of peroxides and their hydrates and peroxyhydrates.

Keywords

Lattice Energy Liquid Ammonia Hydrogen Peroxide Solution Sodium Oxide Lithium Hydroxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. George. J. Chem. Soc. (1955), p. 2367.Google Scholar
  2. 2.
    J. Bennet. Phil. Mag. 46: 443 (1955).Google Scholar
  3. 2a.
    W. J. Sax. Dangerous Properties of Industrial Materials, New York, Reinhold Publishing Corp. (1962), p. 1127.Google Scholar
  4. 3.
    A. J. Cohen and J. Margrave. Anal. Chem. 29: 1462 (1957).Google Scholar
  5. 4.
    J. Kleinberg. Unfamiliar Oxidation States and Their Stabilization, Lawrence, Kansas (1950).Google Scholar
  6. 5.
    W.S. Graff. J. Electrochem. Soc. 105: 446 (1958).Google Scholar
  7. 6.
    P. Ray and D. Sen. Chemistry of Bi- and Tripositive Silver, Natl. Inst. Sci. India (1960).Google Scholar
  8. 7.
    A. Glassner. J. Chem. Soc. (1951), p. 904.Google Scholar
  9. 8.
    F.T. Magg and D. Sutton. Trans. Faraday Soc. 54: 1861 (1958).Google Scholar
  10. 9.
    F.T. Magg and D. Sutton. Trans. Faraday Soc. 55: 974 (1959).Google Scholar
  11. 10.
    S.Z. Makarov, T.I. Arnold, N.N. Stasevich, and E.V. Shorina. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk (1960), p. 1913.Google Scholar
  12. 11.
    V. Frei. Collection Czech. Chem. Commun. 27: 179 (1962).Google Scholar
  13. 12.
    V. Frei. Collection Czech. Chem. Commun. 27: 430 (1962).Google Scholar
  14. 13.
    S. Z. Makarov and T.I. Arnold. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk (1960), p. 2090.Google Scholar
  15. 14.
    A.B. Neiding and I. A. Kazarnovskii. Dokl. Akad. Nauk SSSR 78: 713 (1951).Google Scholar
  16. 15.
    Inorganic Syntheses, Vol. 4, New York, McGraw-Hill Book Company (1953), p. 12.Google Scholar
  17. 16.
    J.A. MacMillan. Acta Cryst. 7: 640 (1954).Google Scholar
  18. 17.
    G.M. Schwab and G. Hartmann. Z. Anorg. Allgem. Chem. 281: 183 (1955).Google Scholar
  19. 18.
    T. Palagyi and I. Nâray-Szabb. Acta Chim. Acad. Sci. Hung. 30: 1 (1962).Google Scholar
  20. 19.
    V.A. Lunenok-Burmakina and A.I. Brodskii. Dokl. Akad. Nauk SSSR 129: 1335 (1959).Google Scholar
  21. 20.
    J.A. MacMillan. J. Inorg. Nucl. Chem. 13: 28 (1960).Google Scholar
  22. 21.
    J.A. MacMillan. Chem. Rev. 62. 65 (1962).Google Scholar
  23. 22.
    R. de Forcrand. Compt. Rend. 130: 1465 (1900).Google Scholar
  24. 23.
    F. Feher. Ber. 86: 1429 (1953).Google Scholar
  25. 24.
    S.Z. Makarov and T.A. Dobrynina. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk (1955), p. 411.Google Scholar
  26. 25.
    T.A. Dobrynina. Author’s Candidate Thesis, Moscow, IONHKh Akad. Nauk SSSR (1957).Google Scholar
  27. 26.
    T.A. Dobrynina. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk (1960), p. 962.Google Scholar
  28. 27.
    S. Z. Makarov and T.A. Dobrynina. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk (1956), p. 294.Google Scholar
  29. 27a.
    T. A. Dobrynina. Lithium Peroxide, Moscow, Izd. °Nauka° (1964).Google Scholar
  30. 28.
    A. J. Cohen. J. Am. Chem. Soc. 74: 3762 (1952).Google Scholar
  31. 29.
    J. Aubry and Ch. Gleitzer. Bull. Soc. Chim. France (1957), p. 109.Google Scholar
  32. 30.
    H.H. Strater. U.S. Patent 2292358 (1960).Google Scholar
  33. 31.
    R.O. Bach and W. W. Boardman. Chem. Eng. News 40 (47): 54 (1962).Google Scholar
  34. 32.
    H. Hahn. Z. Anorg. Allgem. Chem. 275: 35 (1954).Google Scholar
  35. 33.
    D. Schechter and J. Kleinberg. J. Am. Chem. Soc. 76: 3297 (1954).Google Scholar
  36. 34.
    H. Lux. Z. Anorg. Allgem. Chem. 298: 298 (1959).Google Scholar
  37. 35.
    S. Z. Makarov and T. A. Dobrynina. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk (1960), p. 1321.Google Scholar
  38. 36.
    I. I. Vol’nov. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk (1957), p. 762.Google Scholar
  39. 37.
    I.I. Vol’nov and A.N. Shatunina. Zh. Neorgan. Khim. 4: 257 (1959).Google Scholar
  40. 38.
    T.V. Rode, T.A. Dobrynina, and G.A. Gol’der. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk (1955), p. 61.Google Scholar
  41. K. Notz and R. Bach. Chimia (Aarau) 17: 158 (1963).Google Scholar
  42. 40.
    M. Markowitz, D.A. Boryta, and H. Stewart. Chem. Eng. News 41 (3): 5 (1963).Google Scholar
  43. 41.
    H. Föppl. Z. Anorg. Allgem. Chem. 291: 46 (1957).Google Scholar
  44. 42.
    E. Brame. J. Inorg. Nucl. Chem. 4: 90 (1957).Google Scholar
  45. 43.
    L. Brewer. Chem. Rev. 52: 6 (1953).Google Scholar
  46. 44.
    J.P. Coughlin. Bull. 542 Bureau of Mines, Washington (1954).Google Scholar
  47. 45.
    K.I. Selezneva. Zh. Neorgan. Khim. 5: 1688 (1960).Google Scholar
  48. 46.
    J.H. Lanmeck. J. Chem. Eng. Data 6: 233 (1960).Google Scholar
  49. 47.
    W.D. Johnston and R.R. Heikes. J. Chem. Phys. 26: 582 (1957).Google Scholar
  50. 48.
    W.D. Johnston and R. R. Heikes. J. Phys. Chem. 7: 1 (1958).Google Scholar
  51. 49.
    W.D. Johnston and R.R. Heikes. J. Am. Chem. Soc. 78: 3255 (1956).Google Scholar
  52. 50.
    R.R. Heikes and W.D. Johnston. U.S. Patent 2921973 (1960).Google Scholar
  53. 50a.
    R. R. Heikes and W.D. Johnston. U.S. Patent 2953617 (1960).Google Scholar
  54. 51.
    W.D. Johnston, R.C. Miller, and R. Maselsky. J. Phys. Chem. 63: 198 (1959).Google Scholar
  55. 52.
    C. Walling and D.A. Buckler. J. Am. Chem. Soc. 77: 6032 (1955).Google Scholar
  56. 53.
    H. J. Castner. German Patent 67094 (1891).Google Scholar
  57. 54.
    M. Sittig. Sodium, Moscow, Gosatomizdat (1961), p. 192 [originally published in English by Reinhold Publishing Corp., New York].Google Scholar
  58. 55.
    D. W. Hardie. Ind. Chemist 31: 385 (1955).Google Scholar
  59. 56.
    J. Miller. Chem. Ind. 2: 91 (1953).Google Scholar
  60. 57.
    H.R. Tennant and R.B. Schow. Handling and Use of the Alkali Metals, Advan. Chem. Ser. 19, ACS, New York (1957), p. 118.Google Scholar
  61. 58.
    R. Kohlmuller. Ann. Chien. 4: 1190 (1959).Google Scholar
  62. 59.
    D.S. Natz. U.S. Patent 2633406 (1953).Google Scholar
  63. 60.
    R.F. Hulse and D.S. Natz. U.S. Patent 2685500 (1954).Google Scholar
  64. 61.
    National Distillers Prod. Corp. British Patent 730130 (1955).Google Scholar
  65. 62.
    Chem. Eng. News 34: 1992 (1956).Google Scholar
  66. 63.
    W. Kiabunde and J. Joung. U.S. Patent 2752226 (1956).Google Scholar
  67. 64.
    Chem. Trade J. 138 (3598): 1198 (1956).Google Scholar
  68. 65.
    T. Tadler and R. Coleman. U.S. Patent 2789885 (1957).Google Scholar
  69. 66.
    F. Schumacher and G. Irwin. U.S. Patent 2825629 (1958).Google Scholar
  70. 67.
    L.I. Governale. U.S. Patent 2671010 (1954).Google Scholar
  71. 68.
    Chem. Eng. 69(6):90 (1962); J. Szechtman. U.S. Patent 3119664 (1964).Google Scholar
  72. 69.
    R. Schow and R. Coleman. C.A. 51: 13729 (1957).Google Scholar
  73. 70.
    F.T. Seelye and T.A. Rafter. Nature 165: 316 (1950).Google Scholar
  74. 71.
    G. J. Petretic. Anal. Chem. 23: 1183 (1951).Google Scholar
  75. 72.
    R. P. Anibal. Anal. Chem. 32: 293 (1960).Google Scholar
  76. 73.
    R.S. Joung and K.G.A. Strachan. Chem. Ind. 7: 154 (1953).Google Scholar
  77. 74.
    O. Rosner. Z. Metallk. 48: 137 (1958).Google Scholar
  78. 75.
    H. E. Blake and W.F. Holbrook. Chemist-Analyst 46: 42 (1957).Google Scholar
  79. 76.
    R.L. Tallman. J. Am. Chem. Soc. 79: 2979 (1957).Google Scholar
  80. 77.
    H. Hohn. Austrian Patent 175237 (1953).Google Scholar
  81. 78.
    G. Jangg. Z. Anorg, Allgem. Chem. 311: 186 (1961).Google Scholar
  82. 79.
    H. W. Nicolai. Chim. Ind. 73: 1156 (1955).Google Scholar
  83. 80.
    H. Ostertag and J. Chassain. Compt, Rend. 238: 684 (1954).Google Scholar
  84. 81.
    A. Etienne and J. Fellion. Compt. Rend. 238: 1429 (1954).Google Scholar
  85. 82.
    H. Hock, H. Knopf, and E. Ernst. Angew. Chem. 71: 541 (1959).Google Scholar
  86. 83.
    B. Emmert. Ber. 54B: 204 (1921).Google Scholar
  87. 84.
    R. Setton. U.S. Patent 2083691 (1958).Google Scholar
  88. 85.
    R.M.R. Ornhjieim. Austrian Patent 202974 (1959); West German Patent 1054970 (1959).Google Scholar
  89. 86.
    S. Z. Makarov and N. K. Grigor’eva. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk (1955), p. 17.Google Scholar
  90. 87.
    S. Z. Makarov and N. K. Grigor’eva. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk (1955), p. 208.Google Scholar
  91. 88.
    R.L. Tallman. Dissertation Abstr. 20: 4293 (1960).Google Scholar
  92. 89.
    R.L. Tallman and J. L. Margrave. J. Inorg. Nucl. Chem. 21: 40 (1961).Google Scholar
  93. 90.
    K. B. Yatsimirskii. Izv. VUZOV, Khim. i Khim. Tekhnol. 2: 480 (1959).Google Scholar
  94. 91.
    C. Duval and J. Lecomte. Bull. Soc. Chim. France 20 (5): 205 (1953).Google Scholar
  95. 92.
    T. R. Griffiths, K.A. Lott, and M.C.R. Symons. Anal. Chem. 31: 1338 (1959).Google Scholar
  96. 93.
    P. W. Gilles and J.L. Margrave. J. Phys. Chem. 60: 1333 (1956).Google Scholar
  97. 94.
    S.S. Todd. J. Am. Chem. Soc. 75: 1229 (1953).Google Scholar
  98. 95.
    M.S. Chandrasckaraiah. J. Phys. Chem. 63: 1505 (1959).Google Scholar
  99. 96.
    K. Savithri and S.R. Rao. Proc. Indian Acad. Sci. 16A: 221 (1942).Google Scholar
  100. 97.
    T. V. Rode and G.A. Gol’der. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk (1956), p. 299.Google Scholar
  101. 98.
    T.V. Rode and G.A. Gol’der. Dokl. Akad. Nauk SSSR 110: 1001 (1956).Google Scholar
  102. 99.
    M. Jacquinot. Compt. Rend. 238: 105 (1954).Google Scholar
  103. 100.
    M. Jacquinot. Compt. Rend. 239: 61 (1954).Google Scholar
  104. 101.
    M. Viltange. Ann. Chim. 5: 1037 (1960).Google Scholar
  105. 102.
    M. Viltange. Chim. Anal. 42: 608 (1960).Google Scholar
  106. 103.
    M. Viltange-Jacquinot. Compt. Rend. 242: 781 (1956).Google Scholar
  107. 104.
    M. Viltange-Jacquinot. Compt. Rend. 244: 1215 (1957).Google Scholar
  108. 105.
    C. Duval and J. Lecomte. Compt. Rend. 234: 2445 (1952).Google Scholar
  109. 106.
    Chem. Eng. News 32: 258 (1954).Google Scholar
  110. 106a.
    Ya. I. Milchailenko. Zh. Russ. Fiz.-Khim. Obshchest. 53: 350 (1921).Google Scholar
  111. 107.
    A. A.’Zalutraeva. Tr. Gos. Inst. Prikl. Khim. No. 45: 97 (1960).Google Scholar
  112. 108.
    J. Mattner and R. Mattner. Z. Anal. Chem. 134: 524 (1951).Google Scholar
  113. 109.
    Inorganic Syntheses, Compl. 3, Moscow, IL (1952), p. 7.Google Scholar
  114. 110.
    E. Nast. Angew. Chem. 65: 266 (1953).Google Scholar
  115. 111.
    R. Nast. Oesterr. Chemiker-Ztg. (1953), p. 152.Google Scholar
  116. 112.
    Structure Reports 8:125 (1956).Google Scholar
  117. 113.
    S. Linderborg. Kymi Ytyma No. 1: 3 (1960).Google Scholar
  118. 114.
    von Schink. Chem. Ingr.-Tech. 37: 462 (1960).Google Scholar
  119. 115.
    A. Kh. Mel’nikov and T.P. Firsova. Zh. Neorgan. Khim. 6: 2470 (1961).Google Scholar
  120. 115a.
    P. Jaubert. Compt. Rend. 132: 86 (1901).Google Scholar
  121. 115b.
    N.G. Vannerberg. In: Progress in Inorganic Chemistry, New York, Inter-science Publishers, Inc. (1962), p. 173.Google Scholar
  122. 116.
    J. Partington and A. Fathallah. J. Chem. Soc. (1959), p. 1934.Google Scholar
  123. 117.
    I. I. Vol’nov and A. N. Shatunina. Zh. Neorgan. Khim. 4: 1491 (1959).Google Scholar
  124. 118.
    G.L. Cunningham and F.R. Romesberg. U.S. Patent 2908552 (1959).Google Scholar
  125. 119.
    Chem. Eng. News 31 (39): 4012 (1953).Google Scholar
  126. 120.
    A. Le Berre. Compt. Rend. 252:1341 (1961); French Patent 1290179 (1962).Google Scholar
  127. 121.
    A. Le Berre. Bull. Soc. Chim. France (1961), p. 1198.Google Scholar
  128. 122.
    Glemser, H. Hanschild, and G. Lutz. Z. Anorg. Allegem. Chem. 269: 93 (1952).Google Scholar
  129. 123.
    T. V. Rode, A. P. Zachat-skaya, and G.A. Gol’der. Zh. Neorgan. Khim. 5: 524 (1960).Google Scholar
  130. 124.
    C.A. Addison and J. Lewis. J. Chem. Soc. (1953), p. 1869.Google Scholar
  131. 125.
    K. E. Mironov, B.S. Dzyatkevich, and T.I. Rogozhnikova. Izv. Sibirsk. Otd. Akad. Nauk SSSR 11: 130 (1962).Google Scholar
  132. 126.
    J. Rademachers and U. Wannagat. Angew. Chem. 69: 783 (1957).Google Scholar
  133. 127.
    M. Schmidt and H. Bipp. Z. Anorg. Allgem. Chem. 303: 205 (1960).Google Scholar
  134. 128.
    M. Antelman. J. Chem. Educ. 32: 273 (1955).Google Scholar
  135. 129.
    L. Duval. C.A. 48: 11926 (1954).Google Scholar
  136. 130.
    R. Kirk and D. Othmer. Encyclopedia of Chemical Technology, Vol. 10, New York, The Interscience Encyclopedia (1953), p. 38.Google Scholar
  137. 131.
    A.S. White. Dyer 111: 417 (1954).Google Scholar
  138. 132.
    Imperial Chemical Industries Limited. Granular Sodium Peroxide, Birmingham, Kynoch Press (1962), p. 25.Google Scholar
  139. 133.
    Yu. V. Karyakin and I. I. Angelov. Pure Chemical Reagents, Moscow, Goskhimizdat (1955).Google Scholar
  140. 134.
    L.A. Biman et al. Bleaching of Cellulose, Moscow-Leningrad, Goslesbumizdat (1957), p. 201.Google Scholar
  141. 135.
    C.A. 48:10341, 11055, 13219 (1954).Google Scholar
  142. 136.
    A. Yankovskii. Khim. i Khim. Tekhnol. 10: 134 (1956).Google Scholar
  143. 137.
    G. Rowlendson. Khim, i Khim. Tekhnol. 10: 146 (1956).Google Scholar
  144. 138.
    F. Wultsch. Tappi 42: 313 (1959).Google Scholar
  145. 139.
    W.F. Schroeder. U.S. Patent 2865701 (1958).Google Scholar
  146. 140.
    W. Germer. West German Patent 873651 (1953).Google Scholar
  147. 141.
    M. J. Mouton, J.M. Cholley, A. Meunier-Guttin. Papeterie 76:311, 357; 77:339 (1955); 79: 205 (1957).Google Scholar
  148. 142.
    G. L. Bergada and S. Hernandes. Rev. Cienc. Apl. 7: 418 (1953).Google Scholar
  149. 143.
    D. Berruso and G. Ceragioli. Ind. Carta 8: 11 (1954).Google Scholar
  150. 144.
    H. Sihtola. Paperi Puu 34: 447 (1957).Google Scholar
  151. 145.
    W. Hundt and K. Wieweg. Seifen-Oele-Fette-Wachse 81: 419, 444 (1955).Google Scholar
  152. 146.
    P. Kajanns and V. Ostring. Paperi Puu 40: 203 (1958).Google Scholar
  153. 147.
    F.E. Clarke. J. Am. Soc. Naval Engrs. 68: 105 (1956).Google Scholar
  154. 148.
    Auergesellschaft. West German Patent 1009929 (1957); RZh. Khim. No. 3: 8823 (1959).Google Scholar
  155. 149.
    P.H. Margulis, Plating 42: 561 (1955).Google Scholar
  156. 150.
    C.B. Francis. U.S. Patent 2569159 (1951).Google Scholar
  157. 151.
    C.A. 48:7857 (1954).Google Scholar
  158. 152.
    N.R. Shvedov. Zavodskaya Lab. 20: 915 (1954).Google Scholar
  159. 153.
    J. Le Baron. U.S. Patent 2826301 (1958).Google Scholar
  160. 153a.
    T. Rafter. Analyst 75: 485 (1950).Google Scholar
  161. 154.
    K.F.G. Hosking. Mining Mag. 89: 137 (1953).Google Scholar
  162. 154a.
    C. B. Belcher. Talanta 10: 75 (1963).Google Scholar
  163. 154b.
    T.R. Cunningham and T.R. McNeil. Ind. Eng. Chem. (Analyt. Edition) 1: 70 (1929).Google Scholar
  164. 154c.
    F.M. Postina, Jr. U.S. At. Energy Comm. Y: 1377 (1962).Google Scholar
  165. 155.
    Analyst 80:391 (1955).Google Scholar
  166. 156.
    J. Saje. Kohdszati Lapok 14: 383 (1959).Google Scholar
  167. 157.
    R. Rabea. Analele Stint. Univ. ‘A. I. Cuza“ Iasi, Sect. I (N.S.) 4: 171 (1958).Google Scholar
  168. 158.
    C. Weissenberg and N. Meinert. U.S. Patent 2763559 (1956).Google Scholar
  169. 159.
    F. Salvini. Italian Patent 516030 (1954).Google Scholar
  170. 160.
    U.S. NASA. U.S. Patent 2981616 (1961).Google Scholar
  171. 161.
    W. Schumb, et al. Hydrogen Peroxide, Moscow, IL (1958) [originally published in English by Reinhold Publishing Corp., New York].Google Scholar
  172. 162.
    W. Klemm and H. J. Scharf. Z. Anorg. Allgem. Chem. 303: 263 (1960).Google Scholar
  173. 163.
    C. Bertoglio Riolo. Ann. Chim. 44: 815 (1954).Google Scholar
  174. 164.
    I.A. Kazarnovskii and S.I. Raikhshtein. Zh. Fiz. Khim. 21: 252 (1947).Google Scholar
  175. 165.
    I.A. Kazarnovskii and A.B. Neiding. Dokl. Akad. Nauk SSSR 86: 717 (1952).Google Scholar
  176. 166.
    A. W. Petrocelli and D. L. Kraus. J. Chem. Educ. 40: 146 (1963).Google Scholar
  177. 167.
    A.W. Petrocelli. Dissertation Abstr. 21:1081 (1960); J. Phys. Chem, 66: 1225 (1962).Google Scholar
  178. 168.
    G. Brauer. Z. Anorg. Chem. 255: 101 (1947).Google Scholar
  179. 169.
    A. Joannis. Compt. Rend. 116: 1370 (1893).Google Scholar
  180. 170.
    E. Rengade. Compt. Rend. 140: 1536 (1905).Google Scholar
  181. 171.
    E. Rengade. Bull. Soc. Chim. (Paris) 35 (3): 769 (1906).Google Scholar
  182. 172.
    E. Rengade. Ann. Chim. Phys. 11 (8): 348 (1907).Google Scholar
  183. 172a.
    G. V. Morris. Dissertation Abstr. 23: 2343 (1963).Google Scholar
  184. 173.
    F. Kuhbier. Dissertation, Berlin Friedrich-Wilhelms Universität (1929).Google Scholar
  185. 174.
    Hydrogen Peroxide and Peroxide Compounds, edited by M. E. Pozin, Moscow, Goskhimizdat (1951).Google Scholar
  186. 175.
    K.E. Mironov. Zh. Neorgan. Khim. 4: 153 (1959).Google Scholar
  187. 176.
    K.E. Mironov. Candidate Thesis, Moscow, IONKh Akad. Nauk SSSR (1953).Google Scholar
  188. 177.
    P. Giguère and D. Chin. Can. J. Chem. 37: 2064 (1959).Google Scholar
  189. 178.
    K. E. Mironov. Izv. Sibirisk. Otd. Akad. Nauk SSSR (1960), p. 143.Google Scholar
  190. 179.
    K. E. Mironov. Can. J. Chem. 38: 2269 (1960).Google Scholar
  191. 180.
    A. Simon and K. Krishman. Naturwiss. 42: 14 (1955).Google Scholar
  192. 181.
    A. Knop and P. Giguère. Can. J. Chem. 37: 1794 (1959).Google Scholar
  193. 182.
    A. Simon and M. Marchand. Z. Anorg. Allgem. Chem. 262: 192 (1960).Google Scholar
  194. 183.
    F.D. Rossini. Selected Values of Chemical Thermodynamic Properties, Circular 500, NBS US, Washington (1952).Google Scholar
  195. 184.
    S.A. Shchukarev. Zh. Obshch. Khim. 28: 857 (1958).Google Scholar

Copyright information

© Plenum Press 1966

Authors and Affiliations

  • Il’ya Ivanovich Vol’nov
    • 1
  • A. W. Petrocelli
    • 2
  1. 1.Laboratory of Peroxide Chemistry, N. S. Kurnakov Institute of General and Inorganic ChemistryAcademy of Sciences of the USSRMoscowUSSR
  2. 2.General Dynamics/Electric Boat DivisionChemistry and Chemical Engineering SectionGrotonUSA

Personalised recommendations