Advertisement

Isochronal Annealing of Resistivity in Float Zone and Czochralski NTD Silicon

  • Paul J. Glairon
  • J. M. Meese

Abstract

Resistivity and thermal probe measurements have been used to characterize the isochronal annealing, type conversion, and phosphorus electrical activation of NTD-Si over the temperature range of 20 to 850°C in undoped float zone and pulled silicon. Similar experiments are reported for Ga doped float zone for [P]/[B] ratios of 1 to 3. The annealing associated with fast neutron damage has been isolated using boron shielding during irradiation. The effects of β- recoil damage have been isolated by rapid pre-annealing to 850°C before appreciable 31Si → 31P + β- decay had occurred. Type conversion annealing peaks (p → n) occur at 650–750°C in NTD float zone, at 400°C in NTD Czochralski and at 350°C (n → p) in β- recoil damaged silicon. A dominate acceptor defect dominates the conductivity in the annealing temperature range of 575–650°C in both float zone and Czochralski. Several reverse annealing peaks from 20–550°C are also observed in most samples and heavily irradiated float zone exhibits many annealing features similar to Czochralski.

Keywords

Boron Concentration Isochronal Annealing Neutron Dose Type Conversion Float Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    M. Tanenbaum and A. D. Mills, J. Electrochem. Soc. 108, 171 (1961).CrossRefGoogle Scholar
  2. 2).
    H. Herzer, Semiconductor Silicon 1977, ed. by H. R. Huff and E. Sirtl, The Electrochemical Society, Princeton, N.J. (1977), p. 106.Google Scholar
  3. 3).
    V. A. Kharchenko and S. P. Solov’ev, Izv. Akad. Nauk USSR, Neorgan. Mat. 7, 2137 (1971).Google Scholar
  4. 4).
    V. A. Kharchenko and S. P. Solov’ev, Sov. Phys. Semicond. 5, 1437 (1972).Google Scholar
  5. 5).
    V. N. Modkovich, S. P. Solov’ev, E. M. Temper, V. A. Kharchenko, Sov. Phys. Semicond. 8, 139 (1974).Google Scholar
  6. 6).
    H. A. Herrmann and H. Herzer, J. Electrochem. Soc. 122, 1568 (1975).CrossRefGoogle Scholar
  7. 7).
    E. W. Haas and M. S. Schnoller, IEEE Trans, on Electron Devices ED-23, 803 (1976).CrossRefGoogle Scholar
  8. 8).
    H. J. Janus and O. Malmros, IEEE Trans, on Electron Devices ED-23, 797 (1976).CrossRefGoogle Scholar
  9. 9).
    M. J. Hill, P. M. Van Iseghem and W. Zimmerman, IEEE Trans, on Electron Devices ED-23, 809 (1976).CrossRefGoogle Scholar
  10. 10).
    J.M. Meese, Silicon Detector Compensation by Nuclear Transmutation, Technicial Report AFML-TR-77–178, Air Force Materials Laboratory, Wright-Patterson AFB, Ohio 45433, (February 1978).Google Scholar
  11. 11).
    M. H. Young, O. J. Marsh and R. Baron, Bull. Am. Phys. Soc. 22, 1241 (1977).Google Scholar
  12. 12).
    R. T. Young and J. W. Cleland, Bull. Am. Phys. Soc. 26, 328 (1977).Google Scholar
  13. 13).
    J. Goldberg, Appl. Phys. Lett. 31, 578 (1977).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Paul J. Glairon
    • 1
  • J. M. Meese
    • 1
  1. 1.Research Reactor FacilityUniversity of MissouriColumbiaUSA

Personalised recommendations