Advertisement

Atomic Displacement Effects in Neutron Transmutation Doping

  • H. J. Stein

Abstract

The production of defects in silicon by neutron irradiation and the effects of subsequent thermal annealing are reviewed for their impact on neutron transmutation doping. Recoiling atoms from fast neutron interactions are the dominant contribution to the energy available for producing atomic displacements. Energy deposition considerations indicate that defect clusters are created but amorphous zone formation is highly unlikely. Extensive defect reordering occurs at room temperature with resultant vacancy- vacancy, vacancy-impurity, interstitial-insterstitial, and interstitial-impurity interactions. Many irradiation-produced defects have been characterized and identified for annealing temperatures < 500°C, and the role of impurities is pervasive. For temperatures near 500°C defect evolution processes yield vacancy and interstitial loops with impurities still participating. Additional work is needed to more fully characterize and identify residual lattice imperfections which remain in irradiated silicon after annealing to temperatures > 500°C, and to understand the interaction processes in their formation. Although the concentrations of residual defects are relatively low, these residual defects are of primary importance for neutron transmutation doping and also for ion implantation.

Keywords

Fast Neutron Neutron Irradiation Defect Cluster Isochronal Annealing Residual Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    J. W. Corbett and J. C. Bourgoin, Point Defects in Solids, Semiconductors and Molecular Crystals, Vol. 2, ed. by J. H.Google Scholar
  2. 2).
    H. J. Stein, in Albany Conference on Radiation Effects in Semiconductors, ed. by J. W. Corbett and G. D. Watkins (Plenum Press, New York, 1971) p. 125.Google Scholar
  3. 3).
    J. W. Cleland, in Proceedings-International School of Physics, Enrico Fermi - Course XVIII - Radiation Damage in Solids, ed. by D. S. Billington (Academic Press, New York, 1962) p. 384; see also J. H. Crawford, Jr. and J. W. Cleland, Int. J. Appl. Radiat. Isotopes ~ 189 (1960).Google Scholar
  4. 4).
    M. A. Kirk and L. R. Greenwood, this conference.Google Scholar
  5. 5).
    G. D. Watkins, (lot, cit. 1), Chapter 4.Google Scholar
  6. 6).
    V. A. J. van Lint, R. E. Leadon, and J. F. Colwell, IEEE Trans. Nucl. Sci. NS-19, 181 (1972).CrossRefGoogle Scholar
  7. 7).
    M. Yoshida, J. Phys. Soc. of Japan 16, 44 (1961).CrossRefGoogle Scholar
  8. 8).
    D. K. Brice, Radiat. Effects 11, 227 (1971).CrossRefGoogle Scholar
  9. 9).
    F. L. Vook, in Reading Conference on Radiation Damage and Defects in Semiconductors, ed. by J. E. Whitehouse (Institute of Physics, London Conf. Series No. 16, 1973), p. 60.Google Scholar
  10. 10).
    J. R. Dennis and E. B. Hale, J. Appi. Phys. 49, 1119 (1978).CrossRefGoogle Scholar
  11. 11).
    M. Bertolotti, T. Papa, D. Sette, V. Grasso, and G. Vitali, IL Nuovo Cimento 29, 4310 (1963).CrossRefGoogle Scholar
  12. 12).
    M. Bertolotti, D. Sette, and G. Vitali, J. Appi. Phys. 38, 2645 (1967).CrossRefGoogle Scholar
  13. 13).
    J. R. Parsons and C. W. Hoelke, IEEE Trans, on Nucl. Sci. NS-16, 37 (1969); see also M. L. Swanson, J. R. Parsons, and C. W. Hoelke, (loc. cit. 2), 359.CrossRefGoogle Scholar
  14. 14).
    G. den Ouden, Phil. Mag. 19, 321 (1969).CrossRefGoogle Scholar
  15. 15).
    R. S. Nelson, Radiat. Effects 32, 19 (1977).CrossRefGoogle Scholar
  16. 16).
    B. R. Gossick, J. Appi. Phys. 30, 1214 (1959).CrossRefGoogle Scholar
  17. 17).
    17)J. H. Crawford, Jr. and J. W. Cleland, J. Appi. Phys. 30, 1204 (1959).Google Scholar
  18. 18).
    18)B. L. Gregory, IEEE Trans, on Nucl. Sci. NS-16, 53 (1969).Google Scholar
  19. 19).
    19)H. J. Stein, IEEE Trans, on Nucl. Sci. NS-15, 69 (1968).Google Scholar
  20. 20).
    H. J. Stein, Appi. Phys. Letts. 15, 61 (1969).CrossRefGoogle Scholar
  21. 21).
    21)D. F. Daly and H. E. Noffke, (loc. cit. 2), p. 359.Google Scholar
  22. 22).
    M. Bertolotti, in Santa Fe Conference on Radiation Effects in Semiconductors, ed. by F. L. Vook (Plenum Press, New York 1968), p. 311.Google Scholar
  23. 23).
    J. M. Pankratz, J. A. Sprague, and M. L. Rudee, J. Appi. Phys. 39_, 101 (1968).Google Scholar
  24. 24).
    H. J. Stein, Phys. Rev. 163, 801 (1967).CrossRefGoogle Scholar
  25. 25).
    R. E. Whan, J. Appi. Phys. 37, 3378 (1966).CrossRefGoogle Scholar
  26. 26).
    26)C. E. Barnes, (loc. cit. 2), p. 203.Google Scholar
  27. 27).
    F. L. Vook and H. J. Stein, Radiat. Effects 6, 11 (1970).CrossRefGoogle Scholar
  28. 28).
    28)K. L. Brower, in 5th Intl. Conf. on Ion Implantation in Semiconductors, ed. by F. Chernow, J. A. Borders, and D. K. Brice (Plenum Press, New York, 1977), p. 427; Phys. Rev. B14, 872 (1976).Google Scholar
  29. 29).
    29)G. D. Watkins, in Radiation Damage in Semiconductors, ed. by P. Baruch (Dunod, Paris, 1965), p. 97.Google Scholar
  30. 30).
    30)J. Guldberg, Appi. Phys. Letts. 31, 578 (1977); Dissertation at Technical University of Denmark, “Micro-Defects in Float Zone Silicon,” (1978).Google Scholar
  31. 31).
    Y. H. Lee, J. W. Corbett, and K. L. Brower, Phys. Stat. Sol. (a), 41, 637 (1977).CrossRefGoogle Scholar
  32. 32).
    32)J. C. Corelli, D. Mills, R. Gruver, D. Cuddeback, Y. H. Lee, and J. W. Corbett, in Dubrovnik Conference on Radiation Effects in Semiconductors, ed. by N. B. Urli and J. W. Corbett (The Institute of Physics Conference Series No. 31, 1977), p. 251.Google Scholar
  33. 33).
    T. O. Baldwin and J. E. Thomas, J. Appi. Phys. 39, 4391 (1968)CrossRefGoogle Scholar
  34. 34).
    34)A. Senxes, G. Sifre, and M. Breant, in Semiconductor Silicon 1977 PV 77–2, ed. by H. R. Huff (The Electro. Chem. Soc., Philadelphia, 1977), p. 106.Google Scholar
  35. 35).
    35)N. E. Moyer and R. C. Buschert, (loc. cit. 22), p. 444.Google Scholar
  36. 36).
    R. C. Newman and D. H. J. Totterdel, J. Phys. C8, 3944 (1975).Google Scholar
  37. 37).
    H. J. Stein, J. Electronic Mater. 4, 159 (1975).CrossRefGoogle Scholar
  38. 38).
    38)K. Seshan and J. Washburn, Radiat. Effects (to be published).Google Scholar
  39. 39).
    39)A. Seeger and W. Frank, (loc. cit. 9), p. 262.Google Scholar
  40. 40).
    40)H. Herzer, (loc. cit. 34), p. 106.Google Scholar
  41. 41).
    H. J. Stein, Radiat. Effects 6, 175 (1970).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • H. J. Stein
    • 1
    • 2
  1. 1.Sandia LaboratoriesAlbuquerqueUSA
  2. 2.U.S. Department of Energy FacilityUSA

Personalised recommendations