Advertisement

Catabolism in Acute Renal Failure: Importance of Glucocorticoids and Lysosomal Enzymes

  • August Heidland
  • Roland M. Schaefer
  • Joachim Weipert
  • Ekkehart Heidbreder
  • Markus Teschner
  • Gernot Peter
  • Walter H. Horl
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 212)

Abstract

Renal failure has been previously shown to be a catabolic event1–6. There is growing evidence for a certain role of proteolytic enzymes in the catabolism of acute uremia7–13 Thus, frank proteolytic activity has been demonstrated in ultrafiltrated plasma fractions, in the urine and bronchoalveolar-lavage (BAL) fluid14–15 The type of proteinases involved, is up to now not totally defined. There are some data, which indicate a participation of broad spectrum serine proteinases in the BAL-fluid and in the plasma of ureter-ligated rats16.

Keywords

Acute Renal Failure Muscle Protein Cyanogen Bromide Leukocyte Elastase Muscle Protein Breakdown 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.D. Kopple, Metabolic and endocrine abnormalities: C. nitrogen metabolism, in: “Clinical Aspects of Uremia and Dialysis”, S. G. Massry, ed., Charles C. Thomas, Springfield (1976).Google Scholar
  2. 2.
    J. D. Kopple, M. Jones, S. Fukuda, M. E. Swendseid, Amino acid and protein metabolism in renal failure, Am. J Clin. Nutr 31: 1 532 (1 978).Google Scholar
  3. 3.
    C. Giordano, N. G. DeSanto, R. Senatore, Effects of catabolic stress in acute and chronic renal failure, Am. J. Clin. Nutr 31: 1561 (1978).PubMedGoogle Scholar
  4. 4.
    W. E. Mitch, Amino acid release from the hindquarter and urea appearance in acute uremia, Am. J. Physiol 241: E415 (1981).PubMedGoogle Scholar
  5. 5.
    W. E. Mitch, A. S. Clark, Muscle protein turnover in uremia, Kidney Int. 24 (suppl 1 6): 2 (1 983).Google Scholar
  6. 6.
    R. M. Flügel-Link, I. B. Salusky, M. R. Jones, J. D. Kopple, Protein and amino acid metabolism in posterior hemicorpus of acutely uremic rats, Am. J. Physiol 244: E615 (1 983).Google Scholar
  7. 7.
    G. Richet, H. Villiers, R. Ardaillou, Activite tripeptidasique du plasma au cours de l’insuffisance renale: contribution a 1’ etude du catabolisme protidique, Revue Fr. Etud. Clin. Biol 2: 808 (1957).Google Scholar
  8. 8.
    G. Richet, R. Ardaillou, L’ activite tripeptidasique du plasma au cours des affections severes: contribution a l’ etude de l’ hypercatabolisme protidique,Presse Med 30: 1229 (1959).Google Scholar
  9. 9.
    W. H. Hörl, A. Heidland, Enhanced proteolytic activity - cause of protein catabolism in acute renal failure, Am. J. Clin. Nutr 33: 1423 (1 980).Google Scholar
  10. 10.
    W. H. Hörl, J. Stepinski, C. Gantert, M. Hörl, A. Heidland, Evidence for the participation of proteinases on protein catabolism during hypercatabolic renal failure, Klin. Wochenschr 59: 751 (1981).PubMedCrossRefGoogle Scholar
  11. 11.
    W. H. Hörl, J. Stepinski, A. Heidland, Further evidence for the participation of proteases in protein catabolism during hypercatabolic renal failure, in: “Acute renal failure”, H. E. Eliahou, ed., J. Libbey, London (1 982).Google Scholar
  12. 12.
    W. H. Hörl, J. Stepinski, R. M. Schäfer, C. Wanner, A. Heidland, Role of proteases in hypercatabolic patients with renal failure, Kidney Int 24 (suppl 16): 37 (1 983).Google Scholar
  13. 13.
    W. H. Hörl, R. M. Schäfer, K. Scheidhauer, M. Jochum, A. Heidland, Proteolytic activity in patients with hypercatabolic renal failure, Adv. Exp. Biol. Med 167: 405 (1 984).Google Scholar
  14. 14.
    C. Wanner, P. Schollmeyer, W. H. Hörl, Urinary proteinase activity in patients with multiple traumatic injuries and sepsis, J. Lab. Clin. Med in press (1986).Google Scholar
  15. 15.
    A. Heidland, H. Heine, J. Haunschild, J. Weipert, E. Heidbreder, W. H. Hörl, Uremic pneumonitis: Evidence for participation of proteolytic enzymes, Contrib. Nephrol 41: 352 (1 984).PubMedGoogle Scholar
  16. 16.
    W. H. Hörl, M. Jochum, A. Heidland, H. Fritz, Release of granulocyte proteinases during hemodialysis, Am. J. Nephrol 3: 213 (1 983).Google Scholar
  17. 17.
    W. H. Hörl, A. Heidland, Evidence of the participation of granulocyte proteinases on intradialytic catabolism, Clin. Nephrol 21: 314 (1984).PubMedGoogle Scholar
  18. 18.
    A. Heidland, W. H. Hörl, N. Heller, H. Heine, S. Neumann, E. Heidbreder, Proteolytic enzymes and catabolism: Enhanced release of granulocyte proteinases in uremic intoxication and during hemodialysis, Kidney Int 24 suppl 1 6): 27 (1 983).Google Scholar
  19. 19.
    A. Heidland, J. Weipert, R. M. Schäfer, E. Heidbreder, G. Peter, W.H. Hörl, Proteases and other catabolic factors in renal failure, Kidney Int (suppl) in press (1 986).Google Scholar
  20. 20.
    A. Heidland, W. H. Hörl, N. Heller, H. Heine, S. Neumann, R. M. Schaefer, E. Heidbreder, Granulocyte lysosomal factors and plasma elastase in uremia: A potential factor of catabolism, Klin. Wochenschr 62: 218 (1 984).PubMedCrossRefGoogle Scholar
  21. 21.
    R. M. Schaefer, A. Heidland, W. H. Hörl, Role of leukocyte proteinases and proteinase inhibitors in the catabolism of acute renal failure, Kidney Int (suppl) in press (1986).Google Scholar
  22. 22.
    W. H. Hörl, C. Wanner, F. Thaiss, P. Schollmeyer, Detection of a metalloproteinase in patients with acute and chronic renal failure, Am. J. Nephrol 6: 6 (1 986).Google Scholar
  23. 23.
    R. M. Schaefer, A. Heidland, W. H. Hörl, The effect of adrenalectomy on protein degradation in acutely uremic rats, Kidney Int. 29: 309 (1986).Google Scholar
  24. 24.
    A. Heidland, W. H. Hörl, Contribution of proteases to hyper. catabolism in acute renal failure, in: “Nephrology”, R. R. Robinson, ed., Springer, New York, Berlin, Heidelberg, Tokyo (1 984).Google Scholar
  25. 25.
    J. Y. Tai, A. A. Kortt, T. Y. Liu, S. D. Elliot, Primary structure of streptococcal proteinase. III. Isolation of cyanogen bromide peptides: completes covalent structure of the polypeptide chain, J. Biol. Chem 251: 1955 (1976).PubMedGoogle Scholar
  26. 26.
    A. L. Goldberg, J. F. Dice, Intracellular protein degradation in mammalian and bacterial cells: part I, Annu. Rev. Biochem 43: 835 (1 974).Google Scholar
  27. 27.
    A. L. Goldberg, A. C. St. John, Intracellular protein degradation in mammalian and bacterial cells: part II, Annu. Rev. Biochem 45: 747 (1 976).Google Scholar
  28. 28.
    K. Morihara, H. Tsuzuki, Production of protease and elastase by Pseudomonas aeruginosa strains isolated from patients, Infect. Immunitiy 15: 679 (1977).Google Scholar
  29. 29.
    K. Havemann, M. Gramse, Physiology and pathophysiology of neutral proteinases of human granulocytes, Adv. Exp. Med. Biol 167: 1 (1 984).Google Scholar
  30. 30.
    R. Egbring, W. Schmidt, G. Fuchs, K. Havemann, Demonstration of granulocyte proteases in plasma of patients with acute leukemia and septicemia with coagulation defects, Blood 49: 219 (1 977).Google Scholar
  31. 31.
    M. Jochum, K. H. Duswald, S. Neumann, J. Witte, H. Fritz, Proteinases and their inhibitors in septicemia: Basic concepts and clinical implications, Adv. Exp. Med. Biol 167: 391 (1984).PubMedCrossRefGoogle Scholar
  32. 32.
    V. Baracos, H. P. Rodemann, C. A. Dinarello, A. L. Goldberg, Stimulation of muscle protein degradation and prostaglandin E2 release by leukocytic pyrogen (interleukin-1), N. Engl. J. Med 308: 553 (1 983).Google Scholar
  33. 33.
    R. L. Raff, D. Secrist, Inhibitors of prostaglandin synthesis or cathepsin B prevent muscle wasting due to sepsis in the rat, J. Clin. Invest 73: 1483 (1984).CrossRefGoogle Scholar
  34. 34.
    G. L. Bilbrey, G. R. Faloona, M. G. White, J. P. Knochel:Google Scholar
  35. Hyperglucagonemia of renal failure. J. Clin. Invest 53: 841 (1974).CrossRefGoogle Scholar
  36. 35.
    C. E. Mondon, C. B. Dolkas, G. M. Reaven, P. Alto, M. Field, The site of insulin resistance in acute uremia, J. Am. Diabetes Assoc. 27: 571 (1978).Google Scholar
  37. 36.
    D. Smith, R. A. DeFronzo, Insulin resistance in uremia mediated by post-binding defects, Kidney Int 22: 54 (1 982).Google Scholar
  38. 37.
    W. C. Arnold, M. A. Holliday, Tissue resistance to insulin stimulation of amino acid uptake in acutely uremic rats, Kidney Int. 16: 124 (1979).PubMedCrossRefGoogle Scholar
  39. 38.
    J. D. Kopple, B. Cianciaruso, S. G. Massry, Does parathyroid hormone cause protein wasting?, Contrib. Nephrol 20: 138 (1980).Google Scholar
  40. 39.
    H. Wernze, Changes of plasma renin substrate in physiological and pathophysiological states, in: “Radioimmunoassay: Renin, Angiotensin”, D. K. Krause, W. Hummerich, K. Poulsen, ed., Georg Thieme,Stuttgart (1978).Google Scholar
  41. 40.
    H. G. Rose, M. C. Robertson, T. 8. Schwartz, Hormonal and metabolic influences on intracellular peptidase activity, Am. J. Physiol. 19?: 1063 (1959).Google Scholar
  42. 41.
    I. G. Wool, E. I. Weinshelbaum, Incorporation of C’ `-amino acids into protein of isolated diaphragms: role of the adrenal steroids, Am. J. Physiol 197: 1 089 (1 959).Google Scholar
  43. 42.
    A. L. Goldberg, Protein turnover in skeletal muscle. II. Effect of denervation and cortisone on protein catabolism in skeletal muscle, J. Biol. Chem 244: 3223 (1969).PubMedGoogle Scholar
  44. 43.
    A. L. Goldberg, M. Tischler, G. DeMartino, G. Griffin, Hormonal regulation of protein degradation and synthesis in skeletal muscle, Fed. Proc 39: 31 (1 980).Google Scholar
  45. 44.
    S. R. Rannels, L. S. Jefferson, Effects of glucocorticoids on muscle protein turnover in perfused rat hemicorpus, Am. J. Physiol 238: E564 (1 980).Google Scholar
  46. 45.
    F. M. Thomas, A. J. Murray, L. M. Jones, Interactive effects of insulin and corticosterone on myofibrillar protein turnover in rats as determined by N-methylhistidine excretion, Biochem. J 220: 469 (1984).Google Scholar
  47. 46.
    F. M. Thomas, H. N. Munro, V. R. Young, Effect of glucocorticoid administration and the rate of muscle protein breakdown in vivo in rats, as measured by urinary excretion of N-methylhistidine, Biochem. J 178: 139 (1979).Google Scholar
  48. 47.
    S. R. Rannels, D. E. Rannels, A. E. Pegg, L. S. Jefferson, Glucocorticoid effect on peptide-chain initiation in skeletal muscle and heart, Am. J. Physiol 235: E134 (1 978).Google Scholar
  49. 48.
    P. S. Simmons, J. M. Miles, J. E. Gerich, M. W. Haymond, Increased proteolysis - an effect of increases in plasma cortisol within the physiologic range, J. Clin. Invest 73: 412 (1 984).Google Scholar
  50. 49.
    N. J. Papadoyannakis, C. J. Stefanidis, M. McGeown, The effect of the correction of metabolic acidosis on nitrogen and potassium balance of patients with chronic renal failure, Am. J. Clin. Nutr 40: 623 (1984).PubMedGoogle Scholar
  51. 50.
    R. C. May, R. A. Kelly, E. Mitch, Metabolic acidosis stimulates protein degradation in rat muscle by a glucocorticoid-dependent mechanism, J. Clin. Invest 77: 614 (1986).PubMedCrossRefGoogle Scholar
  52. 51.
    P. K. Bondy, F. L. Engel, B. Farrar, The metabolism of amino acids and protein in the adrenalectomizednephrectomized rat, Endocrinology 44: 476 (1949).Google Scholar
  53. 52.
    J. Wei pert, G. Peter, R. M. Schaefer, E. Heidbreder, A. Heidland, Reduction of urea nitrogen appearance and skeletal muscle degradation by adrenalectomy in binephrectomized rats, Nephron, submitted for publication (1986).Google Scholar
  54. 53.
    V. R. Young, S. D. Alexis, B. S. Baliga, H. N. Munro, Metabolism of administered 3-methylhistidine, J. Biol. Chem 247: 3592 (1 972).Google Scholar
  55. 54.
    L. C. Ward, P. J. Buttery, N-methylhistidine: An index of the true rate of myofibrillar degradation? An appraisal, Life Sci. 23: 1103 (1978).PubMedCrossRefGoogle Scholar
  56. 55.
    E. B. Marliss, C. N. Wei, L. L. Dietrich, The short-term effects of protein intake on 3-methylhistidine excretion, Am. J. Clin. Nutr 32: 1617 (1979).PubMedGoogle Scholar
  57. 56.
    E. G. Afting, W. Bernhard, R. Janzen, J. H. Röthig, Quantitaive importance on non-skeletal muscle N-methylhistidine and creatine in human urine, Biochem. J 200: 449 (1 981).Google Scholar
  58. 57.
    S. G. Massry, J. W. Coburn, D. B. N. Lee, J. Jowsey, C. R. Kleeman, Skeletal resistance to parathyroid hormone in renal failure: Study in 105 human subjects, Ann. Intern. Med 78: 357 (1973).PubMedGoogle Scholar
  59. 58.
    H. P. Rodemann, A. L. Goldberg, Arachidonic acid, prostaglandin E2 and Fla influence raies of protein turnover in skeletal and cardiac muscle, J. Biol. Chem 257: 1 632 (1 982).Google Scholar
  60. 59.
    S. A. Laidlaw, R. Zipser, T. Tasaki, S. H. W. Wu, J. D. Kopple, Inhibiton of prostaglandin E2(PGE2) release by indomethacin (IND) does not decrease muscle protein degradation in acutely uremic ratss, Kidney Int in press (1986).Google Scholar
  61. 60.
    H. Umezawa, T. Aoyagi, Activites of proteinase inhibitors of microbial origin, in: “Proteinases in Mammalian cells and tissues”, A. J. Barred, ed., North Holland, Amsterdam (1977).Google Scholar
  62. 61.
    A. Hershko, A. Ciechanover, Mechanisms of intracellular protein breakdown, Annu. Rev. Biochem 51: 335 (1982).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • August Heidland
    • 1
  • Roland M. Schaefer
    • 1
  • Joachim Weipert
    • 1
  • Ekkehart Heidbreder
    • 1
  • Markus Teschner
    • 1
  • Gernot Peter
    • 2
  • Walter H. Horl
    • 3
  1. 1.Department of MedicineUniversity of WurzburgGermany
  2. 2.Department of DermatologyUniversity of WurzburgGermany
  3. 3.Department of MedicineUniversity of FreiburgFreiburgGermany

Personalised recommendations