Pathogenesis of Acute Renal Failure

  • Michel Burnier
  • Robert W. Schrier
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 212)


Several theories have been proposed to explain the reduced glomerular filtration rate (GFR) occurring in acute renal failure (ARF). Initially, mechanisms related primarily to disturbances of the tubules were advanced and later, others suggested that abnormalities of the renal circulation contributed to the impairment in GFR. It is now clear that the pathogenesis of ARF is multifactorial involving both tubular and vascular events. However, the relative contribution of these tubular and vascular factors varies considerably depending on the model of ARF. Furthermore, it appears that the mechanisms responsible for the initiation of the decrease in GFR differ from those required for its maintenance.


Glomerular Filtration Rate Acute Renal Failure Renal Blood Flow Renal Ischemia Renal Vasoconstriction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. S. Palier and R. J. Anderson, Use of vasoactive agents in the therapy of acute renal failure, in: Acute Renal Failure, B. M. Brenner and J. M. Lazarus, eds., W. B. Saunders, Philadelphia (1983).Google Scholar
  2. 2.
    D. McLean and A. E. Thompson, Effect of phenoxybenzamine on glycerol-induced acute renal failure in the rat, Fed. Proc. 29: 1313 (1970).Google Scholar
  3. 3.
    A. E. Thompson and H. Y. M. Fung, Adrenergic and cholinergic mechanisms in acute renal failure in the dog and in man, Proc. Conf. Acute Renal Failure, DHEW Publication, Washington, DC, p. 293 (1974).Google Scholar
  4. 4.
    L. G. Fine, Acquired prostaglandin E2 (medullin) deficiency as the cause of oliguria in acute tubular necrosis: A hypothesis, Israel J. Med. Sci. 6: 346 (1970).PubMedGoogle Scholar
  5. 5.
    F. C. Reubi, The pathogenesis of anuria following shock, Kidney Int. 5: 106 (1974).PubMedCrossRefGoogle Scholar
  6. 6.
    V. E. Torres, J. C. Romero, C. G. Strong, D. M. Wilson and V. R. Walker, Renal prostaglandin E during acute renal failure, Prostaglandins 8: 353 (1974).Google Scholar
  7. 7.
    J. Flores, D. R. DiBona, C. H. Beck and A. Leaf, The role of cell swelling in ischemic renal damage and the protective effect of hypertonic solute, J. Clin. Invest. 51: 118 (1972).PubMedCrossRefGoogle Scholar
  8. 8.
    W. E. Mitch and W. G. Walker, Plasma renin and angiotensin II in acute renal failure, Lancet 1: 328 (1977).CrossRefGoogle Scholar
  9. 9.
    G. F. DiBona and L. L. Sawin, The renin-angiotensin system in acute renal failure in the rat, Lab. Invest. 25: 528 (1971).PubMedGoogle Scholar
  10. 10.
    P. G. Mathews, T. O. Morgan and C. I. Johnston, The renin-angiotensin system in acute renal failure in rats, Clin.Sci. Mol. Med. 47:79–88 (19).Google Scholar
  11. 11.
    J. Mason, C. Olbricht, T. Takabatake and K. Thurau, The early phase of experimental acute renal failure. I. Intratubular pressure and obstruction, Pfluegers Arch. 37: 155 (1977).Google Scholar
  12. 12.
    J. D. Powell-Jackson, J. MacGregor, J. J. Brown, A. F. Lever and I. S. Robertson, The effect of angiotensin II antisera and synthetic inhibitors of the renin-angiotensin system on glycerol-induced acute renal failure in the rat, in: Proceedings of the Contress on Acute Renal Failure, E. A. Friedman and H. E. Eliahou eds., Department of Health, Education and Welfare, Washington, DC, Publication No. 74–608, pp. 281 (1973).Google Scholar
  13. 13.
    M. J. Mant and E. G. King, Severe acute disseminated intravascular coagulation, Am. J. Med. 67: 557 (1979).PubMedCrossRefGoogle Scholar
  14. 14.
    J. W. Cox, R. W. Baehler, H. Sharma, T. O’Dorisio, R. W. Osgood, J. H. Stein and T. F. Ferris, Studies on the mechanism of oliguria in a model of unilateral acute renal failure, J. Clin. Invest. 53: 1546 (1974).PubMedCrossRefGoogle Scholar
  15. 15.
    T. Suzuki and F. K. Mostoffi, Electron microscopy studies of acute tubular necrosis: Early changes in the glomeruli of rat kidney after subcutaneous injection of glycerin, Lab. Invest. 23: 8 (1970).PubMedGoogle Scholar
  16. 16.
    J. H. Stein, J. Gottschalk, R. W. Osgood and T. F. Ferris, Pathophysiology of a nephrotoxic model of acute renal failure, Kidney Int. 8: 27 (1975).PubMedCrossRefGoogle Scholar
  17. 17.
    R. C. Blantz, The mechanism of acute renal failure after uranyl nitrate, J. Clin. Invest. 55: 621 (1975).PubMedCrossRefGoogle Scholar
  18. 18.
    R. E. Cronin, A. deTorrente, P. D. Miller, R. E. Bulger, T. J. Burke and R. W. Schrier, Pathogenic mechanisms in early norepinephrine induced acute renal failure: Functional and histological correlates of protection, Kidney Int. 14: 155 (1978).Google Scholar
  19. 19.
    W. J. Arendhorst, W. F. Finn and C. W. Gottschalk, Micropuncture study of acute renal failure following temporary renal ischemia in the rat, Kidney Int. 10: S100 (1976).Google Scholar
  20. 20.
    T. J. Burke, R. E. Cronin, K. L. Duchin, L. N. Peterson and R. W. Schrier, Ischemia and tubule obstruction during acute renal failure in dogs: Mannitol in protection, Am. J. Physiol. 238: F305 (1980).PubMedGoogle Scholar
  21. 21.
    J. D. Conger and T. J. Burke, Pathogenesis and prevention of acute urate nephropathy, J. Clin. Invest. 58: 681 (1976).PubMedCrossRefGoogle Scholar
  22. 22.
    M. A. Venkatachalam, D. B. Bernard, J. F. Donohoe and N. G. Levinsky, Ischemic damage and repair in the rat proximal tubule: Differences among the Sl, S2 and S3 segments, Kidney Int. 14: 31 (1978).PubMedCrossRefGoogle Scholar
  23. 23.
    C. Brun and D. Munck, Lesions of the kidney in acute renal failure following shock, Lancet 1: 603 (1957).CrossRefGoogle Scholar
  24. 24.
    A. deTorrente, P. D. Miller, R. E. Cronin, P. E. Paulsen, A. L. Erickson and R. W. Schrier, Effects of furosemide and acetylcholine in norepinephrine-induced acute renal failure, Am. J. Physiol. 235: F131 (1978).Google Scholar
  25. 25.
    G. A. Tanner, K. L. Sloan and S. Sophasan, Effects of renal artery occlusion on kidney function in the rat, Kidney Int. 4: 377 (1973).PubMedCrossRefGoogle Scholar
  26. 26.
    B. D. Myers, B. J. Carrie, R. R. Yee, M. Hilberman and A. B. Michaels, Pathophysiology of hemodynamically mediated acute renal failure in man, Kidney Int. 18: 495 (1980).PubMedCrossRefGoogle Scholar
  27. 27.
    P. E. Arnold, V. J. Van Putten, D. Lumlertgul, T. J. Burke and R. W. Schrier, Adenine nucleotide metabolism and mitochondrial Ca transport following renal ischemia, Am. J. Physiol. 250: F357 (1986).PubMedGoogle Scholar
  28. 28.
    J. Mason, F. Beck, A. Dorge, R. Rick and K. Thurau, Intracellular electrolyte composition following renal ischemia, Kidney Int. 20: 61 (1981).PubMedCrossRefGoogle Scholar
  29. 29.
    P. E. Arnold, D. Lumlertgul, T. J. Burke and R. W. Schrier, In vitro versus in vivo mitochondrial calcium loading in ischemic acute renal failure, Am. J. Physiol. 248:F845 (1985).Google Scholar
  30. 30.
    T. Takano, S. P. Soltoff, S. Murdaugh and L. J. Mandel, Intracellular respiratory dysfunction and cell injury in short-term anoxia of rabbit renal proximal tubules, J. Clin. Invest. 76: 2377 (1985).PubMedCrossRefGoogle Scholar
  31. 31.
    K. W. Snowdowne, C. G. Freudenrich and A. B. Borle, The effects of anoxia on cytosolic free calcium, calcium fluxes, and cellular ATP levels in cultured kidney cells, J. Biol. Chem. 260: 11619 (1985).PubMedGoogle Scholar
  32. 32.
    M. Burnier, P. Shanley, T. J. Burke and R. W. Schrier, Effect of extracellular acidosis on enhanced Ca influx in anoxic renal proximal tubules (PT) (abstract), Kidney Int. 29: 299 (1986).Google Scholar
  33. 33.
    N. S. Frega, D. R. DiBona, B. Guertler and A. Leaf, Ischemic renal injury, Kidney Int. 10: 517 (1976).Google Scholar
  34. 34.
    R. A. Kloner, C. E. Ganote, D. Whalen and R. B. Jennings, Effect of transient period of ischemia on myocardial cells. II. Fine structure during the first few minutes of reflow, Am. J. Pathol. 74: 399 (1979).Google Scholar
  35. 35.
    J. M. McCord, Oxygen-derived free radicals in post-ischemic tissue injury, N. Engl. J. Med. 312: 159 (1985).PubMedCrossRefGoogle Scholar
  36. 36.
    M. S. Paller, J. R. Hoidal and T. F. Ferris, Oxygen-free radicals in ischemic acute renal failure in the rat, J. Clin. Invest. 74: 1156 (1984).PubMedCrossRefGoogle Scholar
  37. 37.
    J. R. Stewart, W. H. Blackwell, S. L. Crute, V. Loughlin, M. L. Hess and L. J. Greenfield, Prevention of myocardial ischemia/reperfusion injury with oxygen free radicals scavengers, Surg. Forum 33: 317 (1982).Google Scholar
  38. 38.
    L. H. Toledo-Pereyra, R. L. Simmons and J. S. Najarian, Effect of allopurinol on the preservation of ischemic kidneys perfused with plasma or plasma substitutes, Ann. Surg. 180: 780 (1974).PubMedCrossRefGoogle Scholar
  39. 39.
    D. R. Wilson, P. E., Arnold, T. J. Burke and R. W. Schrier, Mitochondrial calcium accumulation and mitochondrial respiration in ischemic acute renal failure in the rat, Kidney Int. 25: 519 (1984).PubMedCrossRefGoogle Scholar
  40. 40.
    J. L. Farber, The role of calcium in cell death, Life Sci. 29: 1289 (1981).PubMedCrossRefGoogle Scholar
  41. 41.
    W. G. Nayler, P. A. Poole-Wilson and A. Williams, Hypoxia and calcium, J. Mol. Cell. Cardiol. 11: 683 (1979).PubMedCrossRefGoogle Scholar
  42. 42.
    T. J. Burke, P. E. Arnold, J. A. Gordon, R. E. Bulger, D. C. Dobyan and R. W. Schrier, Protective effect of intrarenal calcium membrane blockers before or after renal ischemia. Functional, morphological and mitochondrial studies, J. Clin. Invest. 74: 1830 (1984).PubMedCrossRefGoogle Scholar
  43. 43.
    D. Goldfarb, A. Iaina, I. Serbon, S. Gavendo, S. Koupler and H. E. Eliahou, Protective effect of verapamil in ischemic acute renal failure in the rat, Proc. Soc. Exp. Biol. Med. 172: 389 (1983).PubMedGoogle Scholar
  44. 44.
    J. I. Shapiro, C. Cheung, A. Itabashi, L. Chan and R. W. Schrier, The effect of verapamil on renal function after warm and cold ischemia in the isolated perfused kidney, Transplantation 40: 596 (1985).PubMedCrossRefGoogle Scholar
  45. 45.
    P. D. Wilson and R. W. Schrier, Nephron segments and calcium as determinants of ischemic cell death in primary renal cell cultures, Kidney Int. (in press).Google Scholar
  46. 46.
    U. Schwertschlag, R. W. Schrier and P. D. Wilson, Beneficial effects of calcium channel blockers and calmodulin binding drugs on in vitro renal cell anoxia, J. Pharmacol. Exp. Ther. (in press).Google Scholar
  47. 47.
    M. Burnier, V. Van Putten, P. D. Wilson, T. J. Burke, and R. W. Schrier, Beneficial effects of verapamil (V) and nifedipine (N) on Ca influx and cell viability in anoxic renal cortical proximal tubules (CPT) (abstract), Mineral Electrolyte Metab. 11: 390 (1985).Google Scholar
  48. 48.
    P. J. Bore, L. Chan, P. A. Sehr, K. R. Thulborn, B. D. Ross and G. K. Radda, The importance of pH in renal preservation, Transplant. Proc. 13: 707 (1981).PubMedGoogle Scholar
  49. 49.
    J. M. Weinberg, Oxygen deprivation-induced injury to isolated rabbit kidney tubules, J. Clin. Invest. 76: 1193 (1985).PubMedCrossRefGoogle Scholar
  50. 50.
    J. V. Bonventre and J. Y. Cheung, Effects of metabolic acidosis on viability of cells exposed to anoxia, Am. J. Physiol. 249: C149 (1985).PubMedGoogle Scholar
  51. 51.
    M. Brezis, S. Rosen, P. Silva and F. H. Epstein, Renal ischemia: A new perspective, Kidney Int. 26: 375 (1984).PubMedCrossRefGoogle Scholar
  52. 52.
    L. Simchowitz, Intracellular pH modulates the generation of superoxide radicals by human neutrophils, J. Clin. Invest. 76: 1079 (1985).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Michel Burnier
    • 1
  • Robert W. Schrier
    • 1
  1. 1.Department of MedicineUniversity of Colorado School of MedicineDenverUSA

Personalised recommendations