Biological Effects under Laboratory Conditions

  • C. Barghigiani
  • R. Ferrara
  • O. Ravera
  • A. Seritti
Part of the NATO Conference Series book series (NATOCS, volume 6)


In the natural environment, organisms are exposed simultaneously to more than one stress and, therefore, they react to the entire environmental situation and not to individual stresses. As a consequence, it is difficult in the natural environment to establish relationships between the intensity of a single stress and its biological effects. The problem becomes more complex if the environment is polluted. For this reason, information on the effects of single pollutants on natural populations is very scarce.


Heavy Metal Batch Culture Metal Speciation Ionic Mercury Phaeodactylum Tricornutum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Batley, G.E., and Gardner, D., 1978, A study of copper, lead and cad mium speciation in some estuarine and coastal marine waters, Estuarine Coastal Mar. Sci., 7: 59.CrossRefGoogle Scholar
  2. Berland, B., Bonin, D.J., Kapkov, V.I., Maestrini, S., and Arlhac, D., 1976, Action toxique de quatre métaux lourds sur la croissance d’algues unicellulaires marines, C.R. Hebd. Séanc. Acad. Sci., Paris, 282: 633.Google Scholar
  3. Berland, B., Chretiennot-Dinet, M., Ferrara, R., and Arlhac, D., 1980, Action â court terme du mercure sur les populations naturelles phytoplanctoniques et bactériennes d’eaux côtiére de la Médi¬terranée nord-occidentale, Proc. V. Journées Etud. Pollutions, Cagliari, C.I.E.S.M., 721.Google Scholar
  4. Davey, E.W., Gentile, J.H., Erickson, S.J., and Betzer, P., 1970, Removal of trace metals from marine culture media, Limnol. Ocean¬ogr., 15: 486.CrossRefGoogle Scholar
  5. Davies, A.G., and Sleep, J.A., 1979, Inhibition of carbon fixation as a function of zinc uptake in natural phytoplankton assemblages, J. Mar. Biol. Ass. U.K., 59: 937.CrossRefGoogle Scholar
  6. Duinker, J.C., and Kramer, C.J.M., 1977, An experimental study on the speciation of dissolved zinc, cadmium, lead and copper in the River Rhine and North Sea water, by differential pulse anodic stripping voltammetry, Mar. Chem., 5: 207.CrossRefGoogle Scholar
  7. Ferrara, R., Grassi, S., and Del Carratore, G., 1975, An automatic homocontinuous culture apparatus, Biotechnol. and Bioeng., 17: 985.CrossRefGoogle Scholar
  8. Ferrara, R., Seritti, A., Barghigiani, C., and Petrosino, A., 1980, Improved instrument for mercury determination by atomic fluore¬scence spectrometry with a high frequency electrodeless discharge lamp, Anal. Chim. Acta, 117: 391.CrossRefGoogle Scholar
  9. Fogg, G.E., 1977, Excretion of organic matter by phytoplankton, Limnol. Oceanogr., 22: 576.Google Scholar
  10. Gates, J.A., and Wilson, W.B., 1960, The toxicity of Gonyaulax monilata Howell to Mugil cephalus, Limnol. Oceanogr., 5: 171.CrossRefGoogle Scholar
  11. Hart, B.T., 1981, Trace metal complexing capacity of natural waters: a review, Environ. Technol. Lett., 2: 95.CrossRefGoogle Scholar
  12. Hollibaugh, J.T., Seibert, D.L.R., and Thomas, W.H., 1980, A compari¬son of the acute toxicities of ten heavy metals to phytoplankton from Saanich Inlet, B.C., Canada, Estuarine Coastal Mar. Sci., 10: 93.CrossRefGoogle Scholar
  13. Huisman, J., and ten Hoopen, H.J.G., 1978, A mercury buffer for toxi¬city experiments with green algae, Water Air Soil Pollut., 10: 325.CrossRefGoogle Scholar
  14. Kerrison, P.H., Sprocati, A.R., Rayera, 0., and Amantini, L., 1980, Effects of cadmium on an aquatic community using artificial en¬closures, Environ. Technol. Lett., 1: 169.CrossRefGoogle Scholar
  15. Leland, H.V., Luoma, S.N., Elder, J.F., and Wilkes, D.J., 1978, Heavy metals and related trace elements, Journal WPCF, 50: 1469.Google Scholar
  16. Nürnberg, H.W., 1979, Polarography and voltammetry in studies of toxic metals in man and his environment, Sci. Total Fnvironm., 12: 35.CrossRefGoogle Scholar
  17. Overnell, J., 1976, Inhibition of marine algal photosynthesis by heavy metals, Mar. Biol., 38: 335.CrossRefGoogle Scholar
  18. Premazzi, G., Rayera, O., and Lepers, A., 1978, A modified turbido¬static system for algal population studies, Mitt. Internat. Verein. Limnol., 21: 42.Google Scholar
  19. Premazzi, G., Bertone, R., Freddi, A., and Rayera, O., 1977, Combined effects of heavy metals and chelating substances on Selenastrum cultures, Proceedings of a Seminar on Ecological Tests Relevant to the Implementation of Proposed Regulations Concerning Environ mental Chemicals: Evaluation and Research Needs, Berlin, Dec. 7–9, 169–187.Google Scholar
  20. Provasoli, L., McLaughlin, J.J.A., and Droop, M.R., 1957, The develop¬ment of artificial media for marine algae, Arch. Mikrobiol., 25: 392.CrossRefGoogle Scholar
  21. Rayera, O., Cartisano, A., de Bernardi, R., and Guzzi, L., 1973, Effects of chelating agents (EDTA and SNTA) on the incorporation of radionuclides by freshwater filter feeding organisms (Copepod and Lamellibranch), in Atti 5° Coll. Int. Oceanogr. Med., Messina, 437–448.Google Scholar
  22. Rayera, 0., 1977, Effects of heavy metals (cadmium, copper, chromium and lead) on a freshwater snail: Biomphalaria glabrata Say (Gastropoda, Prosobranchia), Malacologia, 16: 231.Google Scholar
  23. Seritti, A., Ferrara, R., Barghigiani, C., Petrosino,A., Del Carratore, G.,and Torti, M.,1981, A preliminary study on the distribution of ionic cadmium in batch cultures of Dunaliella saliva by differen¬tial pulse anodic stripping voltammetry, Thalassia Jugos1., 17: 55.Google Scholar
  24. Sharp, J.H., 1977, Excretion of organic matter by marine phytoplankton: Do healthy cells do it?, Limnol. Oceanogr., 22: 381.CrossRefGoogle Scholar
  25. Sipos, L., Valenta, P., Nürnberg, H.W., and Branica, M., 1979, Voltam¬metric determination of the stability constants of the predominant labile lead complexes in sea water, in: “Proc. Int. Experts Discussion on Lead Occurrence, Fate and Pollution in the Marine Environment”, Rovinj (October, 1977), M. Branica and Z. Konrad, eds., Pergamon Press, Oxford.Google Scholar
  26. Skaar, H., Rystad, B., and Jensen, A., 1974, The uptake of 63Ni by a diatom Phaeodactylum tricornutum, Physiologia Pl., 32: 353.CrossRefGoogle Scholar
  27. Sunda, W.G., 1975, “Relationship Between Cupric Ion Activity and the Toxicity of Copper to Phytoplankton”, (Ph.D. Thesis, Mass. Inst. Technol.), Cambridge, Mass., U.S.A., 167 pp.CrossRefGoogle Scholar
  28. Sunda, W.G., and Lewis, J.A.M., 1978, Effect of complexation by natural organic ligands on the toxicity of copper to a unicellular alga, Monochrysis lutheri, Limnol. Oceanogr., 23: 870.CrossRefGoogle Scholar
  29. Takahashi, M., Thomas, W.H., Seibert, D.L.R., Beers, J., Koeller, P., and Parsons, T.R., 1975, The replication of biological events in enclosed water columns, Arch. Hydrobiol., 76: 5.Google Scholar
  30. Tan, T.L., 1980, Effect of long - term lead exposure on the seawater and sediment bacteria from heterogeneous continuous flow cultures, Microb. Ecol., 5: 295.CrossRefGoogle Scholar
  31. Thomas, W.H., Seibert, D.L.R., and Takahashi, M., 1977, Controlled ecosystem pollution experiment: effect of mercury on enclosed water columns. III. Phytoplankton population dynamics and prod¬uction, Mar. Sci. Commun., 3: 331.Google Scholar
  32. Venrick, E.L., 1977, Possible consequences of containing microplankton for physiological rate measurements, J. Exp. Mar. Biol. Ecol., 26: 55.CrossRefGoogle Scholar
  33. Wilson, W.B., and Freeberg, L.R., 1979, (U.S.) E.P.A. Report No. R 801/511.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • C. Barghigiani
    • 1
  • R. Ferrara
    • 1
  • O. Ravera
    • 2
  • A. Seritti
    • 1
  1. 1.Fisiche di Biomolecole e CelluleCNR - Istituto per lo Studio delle ProprietàPisaItaly
  2. 2.Ispra Establishment, Dept. of Physical and Natural SciencesCommission of the European CommunitiesIspra (Va)Italy

Personalised recommendations