Complex Formation in Solution and in Heterogeneous Systems

  • F. H. Frimmel
Part of the NATO Conference Series book series (NATOCS, volume 6)


Tragedies like the Minamata disease show that trace metals, according to their speciation, can have great effects on human life. However, despite its impact on man and nature, the importance in aquatic ecosystems of complex formation is incompletely understood. Therefore, detailed information is needed on the occurrence and on the properties of metal species in the aquatic environment, with surface waters being of particular interest.


Trace Metal Stability Constant Fulvic Acid Heterogeneous System Metal Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, H.E., and Boonlayangoor, C., 1978, Mobilization of metals from sediment by NTA, Verh. Internat. Verein. Limnol., 20: 1956./44/Google Scholar
  2. Batley, G.E., and Florence, T.M., 1976, A novel scheme for the classification of heavy metal species in natural waters, Anal. Lett., 9: 379./34/Google Scholar
  3. Benes, P., Gjessing, E.T., and Steinnes, E., 1976, Interactions between humus and trace elements in fresh water, Water Res., 10: 711./33/CrossRefGoogle Scholar
  4. Blutstein, H., and Smith, J.D., 1978, Distribution of species of Cu, Pb, Zn and Cd in a water profile of the Yarra River estuary, Water Res., 12: 119./48/Google Scholar
  5. Buffle, J., Deladoey, P., and Haerdi, W., 1978, The use of ultrafiltration for the separation and fractionation of organic ligands in fresh waters, Anal. Chim. Acta, 101: 339./31/Google Scholar
  6. Buffle, J., Greter, F.L., and Haerdi, W., 1977, Measurement of complexation properties of humic and fulvic acids in natural waters with lead and copper ion-selective electrodes, Anal. Chem., 49: 216./21/Google Scholar
  7. Buffle, J., Greter, F.L., Nembrini, G., Paul, J., and Haerdi, W., 1976, Capabilities of voltammetric techniques for water quality control problems, Z. Analyt. Chem., 282: 339./18/Google Scholar
  8. Campbell, P.G.C., Bisson, M., Gagné, R., and Tessier, A., 1977, Critical evaluation of the copper ( II) solubilization method for the determination of the complexation capacity of natural waters, Anal. Chem., 49: 2358./41/Google Scholar
  9. Dietz, F., and Frank, H.-D., 1977, Anwendung anorganischer und organischer Austauschermassen als Bodenkörper für Remobilisierungsversuche, Z. Wasser Abwasser Forsch., 10: 109./46/Google Scholar
  10. Dietz, F., Frank, H.-D., and Koppe, P., 1975, Bestimmung des Remobilisierungspotentials von Wässern gegenüber Schwermetallverbindungen, Z. Wasser Abwasser Forsch., 8: 104./45/Google Scholar
  11. Ernst, R., Allen, H.E., and Mancy, K.H., 1975, Characterization of trace metal species and measurement of trace metal stability constants by electrochemical techniques, Water Res., 9: 969./22/CrossRefGoogle Scholar
  12. Europäische Gemeinschaften, der Rat: Richtlinie des Rates, vom 15. Juli 1980, über die Qualität von Wasser für den menschlichen Gebrauch. Amtsblatt der Europäischen Gemeinschaften Nr. L 229/11(30. 8. 80 )./2/Google Scholar
  13. Figura, P., and McDuffie, B., 1977, Characterization of the calcium form of Chelex-100 for trace metal studies, Anal. Chem., 49: 1950./35/Google Scholar
  14. Figura, P., and McDuffie, B., 1980, Determination of labilities of soluble trace metal species in aqueous environmental samples by anodic stripping voltammetry and chelex column and batch methods, Anal. Chem., 52: 1433./32/Google Scholar
  15. Florence, T.M., and Batley, G.E., 1977, Determination of the chemical forms of trace metals in natural waters, with special reference to copper, lead, cadmium and zinc, Talanta, 24: 151./11/CrossRefGoogle Scholar
  16. Frimmel, F.H., 1979, Polarographische Untersuchungen von Kupferkomplexen, Z. Wasser Abwasser Forsch., 12: 206./16/Google Scholar
  17. Frimmel, F.H., 1980, Komplexierung von Metallionen durch Gewässerhuminstoffe. III. Modellentwicklung und Gewässerbezug, Z. Wasser Abwasser Forsch., 13: 217./38/Google Scholar
  18. Frimmel, F.H., and Dietz, F., 1980, Zur summarischen Bestimmung der Komplexbildungsfähigkeit. II. Umsetzungen des Kupferphosphatbodenkörpers mit definierten Liganden, Z. Wasser Abwasser Forsch., 13: 12./43/Google Scholar
  19. Frimmel, F.H., Geywitz, J., and Quentin, K.E., 1981, Modelle für EisenHuminstoffkomplexe, Vom Wasser, 57: 185./37/Google Scholar
  20. Frimmel, F.H., and Niedermann, H., 1980, Komplexierung von Metallionen durch Gewässerhuminstoffe. I. Ein Braunwassersee als Huminstof-flieferant, Z. Wasser Abwasser Forsch., 13: 119./36/Google Scholar
  21. Gamble, D.G., Underdown, A.W., and Langford, C.H., 1980, Copper ( II) titration of fulvic acid ligand sites with theoretical, potentiometric, and spectrophotometric analysis, Anal. Chem., 52: 1901./23/Google Scholar
  22. Golterman, H.L., and van Weelden, R.H., 1976, Schatting von NTA-concentratie in Nederlands oppervlaktewater bij vervanging van fosfaten uit wasmiddelen. H20, 9: 57./5/Google Scholar
  23. Goodman, B.A., 1980, Exchange of comments on the simulation of elec-tron paramagnetic resonance spectra of a copper - fulvic acid complex, Anal. Chem., 52: 1770./53/Google Scholar
  24. Guy, R.D., and Chakrabarti, C.L., 1975, Analytical techniques for speciation of trace metals, in: “Proceedings of Inter. Conf. on Heavy Metals in the Environment”, Toronto, Canada./20/Google Scholar
  25. Guy, R.D., Chakrabarti, C.L., and Schramm, L.L., 1975, The application of a simple chemical model of natural waters to metal fixation in particulate matter, Can. J. Chem., 53: 661./39/Google Scholar
  26. Hanck, K.W., and Dillard, J.W., 1977a, Determination of the complexation capacity of natural water by cobalt ( III) complexation, Anal. Chem., 49: 404./26/Google Scholar
  27. Hanck, K.W., and Dillard, J.W., 1977b, Evaluation of micromolar complexometric titrations for the determination of the complexing capacity of natural waters, Anal. Chim. Acta, 89: 329./9/Google Scholar
  28. Hoffmann, M.R., 1981, Thermodynamic, kinetic, and extrathermodynamic considerations in the development of equilibrium models for aquatic systems, Environ. Sci. Technol., 15: 345./27/Google Scholar
  29. Hoffmann, M.R., Yost, E.C., Eisenreich, S.J., and Maier, W.J., 1981, Characterization of soluble and colloidal-phase metal complexes in river water by ultrafiltration. A mass-balance approach, Environ. Sci. Technol., 15: 655./42/Google Scholar
  30. Jones IT, D.R., and Manahan, S.E., 1977, Elimination of copper-carbonate complex interference in chelating agent analysis by copper solubilization, Anal. Chem., 49: 10./42/Google Scholar
  31. Lakatos, B., Korecz, L., and Meisel, J., 1977, Comparative study on the Mössbauer parameters of iron humates and polyuronates, Geoderma, 19: 149./50/CrossRefGoogle Scholar
  32. McCrady, J.K., and Chapman, G.A., 1979, Determination of copper complexing capacity of natural river water, well water and artificially reconstituted water, Water Res., 13: 143./24/CrossRefGoogle Scholar
  33. Nriagu, J.0., and Coker, R.D., 1980, Trace metals in humic and fulvic acids from Lake Ontario sediments, Environ. Sci. Technol., 14: 443./47/Google Scholar
  34. Rijncommissie Waterleidinbedrijven: Jahresbericht ‘80; Teil A: Der Rhein, 1981, Amsterdam./1/Google Scholar
  35. Saar, R.A., and Weber, J.H., 1980a, Comparison of spectrofluorometry and ion-selective electrode potentiometry for determination of complexes between fulvic acid and heavy-metal ions, Anal. Chem., 52: 2095./30/Google Scholar
  36. Saar, R.A., and Weber, J.H., 1980b, Lead(II)-fulvic acid complexes. Conditional stability constants, solubility, and implication for lead(II) mobility, Environ. Sci. Technol., 14: 877./17/Google Scholar
  37. Schwedt, G., 1981, Methoden zur Bestimmung von Element-Spezies in natürlichen Wässern, in: “Analytiker Taschenbuch Vol. 2”, R. Bock, ed., Springer-Verlag, Berlin./12/Google Scholar
  38. Senesi, N. Griffith, S.M., and Schnitzer, M., 1977, Binding of Fei+ by humic materials, Geochim. Cosmochim. Acta, 41: 969./49/Google Scholar
  39. Shuman, M.S., and Cromer, J.L., 1979, Copper association with aquatic fulvic and humic acids. Estimation of conditional formation constants with a titrimetric anodic stripping voltammetry procedure, Environ. Sci. Technol., 13: 543./14/Google Scholar
  40. Shuman, M.S., and Woodward, G.P., Jr., 1977, Stability constants of copper-organic chelates in aquatic samples, Environ. Sci. Technol., 11: 809./15/Google Scholar
  41. Sillén, L.G., and Martell, A.E., 1964, Stability Constants of Metal-Ion Complexes, Second Edition, Special Publication No. 17, The Chemical Society, London./6a/Google Scholar
  42. Sillén, L.G., and Martell, A.E., 1971, Stability Constants of Metal-Ion Complexes, Supplement No. 1, Special Publication No. 25, The Chemical Society, London./6b/Google Scholar
  43. Skogerboe, R.K., Wilson, S.A., and Osteryoung, J.G., 1980, Exchange of comments on scheme for classification of heavy metal species in natural waters, Anal. Chem., 52: 1960./13/Google Scholar
  44. Sontheimer, H., and Gimbel, R., 1977, Untersuchungen zur Veränderung der Fracht an organischen Wasserinhaltsstoffen mit der Wasserführung am Beispiel des Rheins, gwf-wasser/abwasser, 118: 165./3/Google Scholar
  45. Srna, R.F., Garrett, K.S., Miller, S.M., and Thum, A.B., 1980, Copper complexation capacity of marine water samples from southern California, Environ. Sci. Technol., 14: 1482./28/Google Scholar
  46. Stella, R., and Ganzerli-Valentini, M.T., 1979, Copper ion-selective electrode for determination of inorganic copper species in fresh water, Anal. Chem., 51: 2148./25/Google Scholar
  47. Stolzberg, R.J., 1981, Uncertainty in calculated values of uncomplexed metal ion concentration, Anal. Chem., 53: 1286./10/Google Scholar
  48. Stumm, W., and Morgan, J.J., 1981, “Aquatic Chemistry”, John Wiley Sons, New York./8/Google Scholar
  49. Swallow, K.C., Hume, D.N., and Morel, F.M.M., 1980, Sorption of copper and lead by hydrous ferric oxide, Environ. Sci. Technol., 14: 1326./40/Google Scholar
  50. Truitt, R.E., and Weber, J.H., 1981, Determination of complexing capacity of fulvic acid for copper(II) and cadmium(II) by dialysis titration, Anal. Chem., 53: 337./29/Google Scholar
  51. van Leeuwen, H.P., 1979, Complications in the interpretation of pulse polarographic data on complexation of heavy metals with natural polyelectrolytes, Anal. Chem., 51: 1322./51/Google Scholar
  52. Vuceta, J., and Morgan, J.J., 1978, Chemical modeling of trace metals in fresh waters: Role of complexation and adsorption, Environ. Sci. Technol., 12: 1302./7/Google Scholar
  53. Wilson, S.A., Huth, T.C., Arndt, R.E., and Skogerboe, R.K., 1980, Voltammetric methods for determination of metal binding by fulvic acid, Anal. Chem., 52: 1515./19/Google Scholar
  54. Woodiwiss, C.R., Walker, R.D., and Brownridge, F.A., 1979, Concentrations of Nitrilotriacetate and certain metals in Canadian wastewaters and streams: 1971–1975, Water Res., 13: 599./4/CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • F. H. Frimmel
    • 1
  1. 1.Institut für Wasserchemie und Chemische BalneologieTechnische UniversitätMünchenFederal Republic of Germany

Personalised recommendations