Skip to main content

Part of the book series: NATO Conference Series ((E,volume 6))

Abstract

Biochemists have long been aware that the assimilation by the human body of essential trace elements takes place in certain preferred chemical forms. Cobalamin, the glucose tolerance factor, and heme iron, for example, are the favoured forms of cobalt, chromium, and iron, respectively. Elements may be classified as either essential, such as Cu, Zn, Cr, Mo, V, Mn, Sn, Fe, Ni, Co, and Se or non-essential, Ag, Cd, Hg, Tl, Pb and As. Excesses of either class can be toxic, although in general, the non-essential elements are of greater toxicity, and as with bioavailability, this toxicity will be a function of chemical form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, D.M., and Morel, F.M.M., 1978, Copper sensitivity of Gonyaulax tamarensis, Limnol. Oceanogr., 23: 283.

    Google Scholar 

  • Andrew, R.W., Biesinger, K.E., and Glass, G.E., 1977, Effects of inorganic complexing on the toxicity of copper to Daphnia magna, Water Res., 11: 309.

    Article  CAS  Google Scholar 

  • Anon.,1980, Metallothionein in trace metal metabolism, Nutr. Rev., 38: 286.

    Google Scholar 

  • Baier, R.W., 1977, Lead distribution in the Cape Fear River estuary, J. Environ. Qual., 6: 205.

    Google Scholar 

  • Batley, G.E., 1981, Electroanalytical techniques for the determination of heavy metals in seawater, Mar. Chem., in press.

    Google Scholar 

  • Batley, G.E.,and Farrar, Y.J., 1978, Irradiation techniques for the release of bound heavy metals in natural waters and blood, Anal. Chim. Acta., 99: 288.

    Google Scholar 

  • Batley, G.E.,and Florence, T.M., 1974, An evaluation and comparison of some techniques of anodic stripping voltammetry, J. Electroanal. Chem., 55: 23.

    Google Scholar 

  • Batley, G.E., and Florence, T.M., 1976, Determination of the chemical forms of dissolved cadmium, lead and copper in seawater, Mar. Chem., 4: 347.

    Google Scholar 

  • Batley, G.E., and Gardner, D., 1978, A study of copper, lead and cadmium speciation in some estuarine and coastal marine waters, Estuarine Coastal Mar. Sci., 7: 59.

    Google Scholar 

  • Benes, P., and Steinnes, E., 1974, In situ dialysis for the determination of the state of trace elements in natural waters, Water Res., 8: 947.

    Article  CAS  Google Scholar 

  • Benes, P., and Steinnes, E., 1975, Migration forms of trace elements in natural fresh waters and the effect of the water storage, Water Res., 9: 741.

    Article  CAS  Google Scholar 

  • Betz, M., 1979, Separation of naturally occurring high molecular weight complexes from seawater, Mar. Chem., 7: 165.

    Google Scholar 

  • Brown, S.D., and Kowalski, B.R., 1974, Pseudopolarographic determination of metal complex stability constants in dilute solution by rapid scan anodic stripping voltammetry, Anal. Chem., 51: 2133.

    Google Scholar 

  • Cassidy, R.M., and Elchuck, S., 1980, Trace enrichment methods for the determination of metal ions by high performance liquid chromatography, J. Chromatogr. Sci., 18: 217.

    Google Scholar 

  • Chau, Y.K., and Wong, P.T.S., 1981, Some environmental aspects of organo-arsenic, lead and tin. Proceedings of a N.B.S. Workshop on Environmental Speciation and Monitoring Needs for Trace Metal Containing Substances from Energy-Related Processes, Washington, D.C., 1981, in press.

    Google Scholar 

  • Davis, J.A., and Leckie, J.O., 1978, Effect of adsorbed complexing liquids on trace metal uptake by hydrous oxides, Environ. Sci. Technol., 12: 1309.

    Google Scholar 

  • Figura, P., and McDuffie, B., 1980, Determination of the labilities of soluble trace metal species in aqueous environmental samples by anodic stripping voltammetry and Chelex column and batch methods, Anal. Chem., 52: 1433.

    Google Scholar 

  • Filby, R.H., Shah, K.R., and Funk, W.H., 1974, Role of neutron act- ivation analysis in the study of heavy metal pollution of a lake-river system, in: “Proc. 2nd Int. Conf. Nuclear Methods in Environ. Res.”, J.R. Vogt and W. Meyer, eds., NTIS, Springfield, Va.

    Google Scholar 

  • Florence, T.M., 1977, Trace metal species in fresh waters, Water Res., 11: 681.

    Article  CAS  Google Scholar 

  • Florence, T.M., and Batley, G.E., 1980, Chemical speciation in natural waters, CRC Crit. Rev. Anal. Chem., 9: 219.

    Google Scholar 

  • Florence, T.M., and Batley, G.E., 1981, A new scheme for chemical speciation of copper, lead, cadmium and zinc in seawater, in: “Proceedings of an International Conference on Heavy Metals in the Environment”, Amsterdam, in press.

    Google Scholar 

  • Foster, E.O., and Morris, A.W., 1971, The seasonal variations of dissolved ionic and organically associated copper in the Menni Straits, Deep-Sea Res., 18: 231.

    CAS  Google Scholar 

  • Giesy, J.P., and Briese, L.A., 1977, Trace metal transport by particulates and organic carbon in two South Carolina streams. Verh. Internat. Verein. Limnol., 20: 1401.

    Google Scholar 

  • Gjessing, E.T., 1965, Use of “Sephadex” gel for the estimation of molecular weight of humic substances in natural water, Nature, 208: 1091.

    Article  CAS  Google Scholar 

  • Gnassia-Barelli, M., Romeo, M., Laumond, F., and Pesando, D., 1978, Experimental studies on the relationship between natural copper complexes and their toxicity to phytoplankton, Mar. Biol., 47: 15.

    Google Scholar 

  • Great Lakes Science Advisory Board, 1980, International Joint Commission Report of the Aquatic Ecosystem Objectives Committee, pp. 63.

    Google Scholar 

  • Green, D.E., Fry, M., and Blondin, G.A., 1980, Phospholipids as the molecular instruments of ion and solute transport in biological membranes, Proc. Natl. Acad. Sci. USA, 77: 257.

    Google Scholar 

  • Harrison, R.M., and Laxen, D.P.H., 1980, Physicochemical speciation of lead in drinking water, Nature, 286: 791.

    Article  CAS  Google Scholar 

  • Hart, B.T., and Davies, S.H., 1977a, A new dialysis-ion exchange technique for determining the forms of trace metals in water. Aust. J. Mar. Freshwater Res., 28: 105.

    Google Scholar 

  • Hart, B.T., and Davies, S.H., 1977b, A batch method for the determination of ion-exchangeable trace metals in natural waters. Aust. J. Mar. Freshwater Res., 28: 397.

    Google Scholar 

  • Hart, B.T., and Davies, S.H., 1981, Trace metal speciation in the freshwater and estuarine regions of the Yarra River, Victoria, Estuarine Coastal Mar. Sci., 12: 353.

    Google Scholar 

  • Harvey, G.R., Boren, D.A., and Tokar, J.M., 1981, Structures of seawater fulvic and humic acids derived from proton NMR studies and historical data, Mar. Chem., in press.

    Google Scholar 

  • Hoffman, M.R., Yost, E.C., Eisenreich, S.J., and Maier, W.J., 1981, Characterization of soluble and colloid-phase metal complexes in river water by ultrafiltration. A mass-balance approach, Environ. Sci. Technol., 15: 655.

    Google Scholar 

  • Jackson, G.A., and Morgan, J.J., 1978, Trace metal-chelator interactions and phytoplankton growth in seawater media: Theoretical analysis and comparison with reported observations, Limnol. Oceanogr., 23: 268.

    Google Scholar 

  • Jenne, E.A., ed., 1979, Chemical modeling in aqueous systems-speciation, sorption, solubility and kinetics, A.C.S. Symposium Series 93, American Chemical Society, Washington, D.C.

    Google Scholar 

  • Klapow, L.A., and Lewis, R.H., 1979, Analysis of toxicity data for California marine water quality standards, Jour. Water Poll. Control Fed., 51: 2054.

    Google Scholar 

  • Lee, J., 1979, A scheme for the separation and characterization of possible metal-organic species in natural waters: some preliminary data, Geol. Surv. Can., Paper 79: 121.

    Google Scholar 

  • Lee, J., 1981, The use of reverse phase liquid chromatography for studying trace metal-organic associations in natural waters, Water Res., 15: 507.

    Article  CAS  Google Scholar 

  • Leonard, J.D., and Crewe, N., 1981, Study on the extraction of organic compounds from seawater with XAD-2 resin, in: Proceedings of a Marine Chemistry Symposium, Halifax, N.S., Canada, June, p. 2.

    Google Scholar 

  • Leppard, G.G., Massalski, A., and Lean, D.R.S., 1977, Electron-opaque microscopic fibrils in lakes: their demonstration, their biological derivation and their potential significance in the redistribution of cations, Protoplasma, 92: 289.

    Article  CAS  Google Scholar 

  • McKnight, D.M., and Morel, F.M.M., 1980, Copper complexation by siderophores from filamentous blue-green algae, Limnol. Oceanogr., 25: 62.

    Google Scholar 

  • Mantoura, R.F.C., 1979, Organometallic interactions in natural waters: a review, in: “Organic Chemistry of Sea Water”, E.K. Duursma and R. Dawson, eds., Elsevier Oceanography Series, Elsevier, Amsterdam.

    Google Scholar 

  • Montgomery, J.R., and Santiago, R.J., 1978, Zinc and copper in ‘particulate’ forms and ’soluble’ complexes with inorganic and organic ligands in the Guanajíbo River and coastal zone, Puerto Rico, Estuarine Coastal Mar. Sci., 6: 111.

    Google Scholar 

  • Ovchinnikov, Y.A., 1979, Physico-chemical basis of ion transport through biological membranes: Ionophores and ion channels, Eur. J. Biochem., 94: 321.

    Google Scholar 

  • Pankow, J.F., Leta, D.P., Lin, J.W., Ohl, S.E., Shum, W.P., and Janauer, G.E., 1977, Analysis for chromium traces in the aquatic ecosystem, Sci. Total Environm., 7: 17.

    Google Scholar 

  • Piotrowicz, S.R., Harvey, G.R., Springer-Young, M., Courant, R.A., and Boren, D.A., 1981, Studies of cadmium, copper and zinc complexation by marine fulvic and humic materials in seawater using anodic stripping voltammetry, in: “Trace Metals in Sea-water”, C.S. Wong, J.D. Burton, E.Boyle, K. Bruland, and E.D. Goldberg, eds., Plenum, N.Y.

    Google Scholar 

  • Raspor, B., Valenta, P., Nürnberg, H.W., and Branica, M., 1978, The chelation of cadmium with NTA in seawater as a model for the typical behaviour of trace metal chelates in natural waters, Sci. Total Environm., 9: 87.

    Google Scholar 

  • Selwyn, M.J., and Dawson, A.P., 1977, Model membranes and transport systems, Biochem. Soc. Trans., 5: 628.

    Google Scholar 

  • Sharp, J.H., 1973, Size classes of organic carbon in seawater, Limnol. Oceanogr., 17: 494.

    Google Scholar 

  • Shuman, M.S., and Michael, L.C., 1978, Application of the rotated disk electrode to measurement of copper complex dissociation rate constants in marine coastal samples, Environ. Sci. Technol., 12: 1069.

    Google Scholar 

  • Skogerboe, R.K., Wilson, S.A., and Osteryoung, J.G., 1980, Exchange of comments on scheme for classification of heavy metal species in natural waters, Anal. Chem., 52: 1960.

    Google Scholar 

  • Slowey, J.F., Jeffrey, L.M., and Hood, D.W., 1967, Evidence for organic complexed copper in sea water, Nature, 214: 377.

    Article  CAS  Google Scholar 

  • Smith, R.G., 1976, Evaluation of combined applications of ultrafiltration and complexation capacity techniques to natural waters, Anal. Chem., 48: 74.

    Google Scholar 

  • Steinberg, C., 1980, Species of dissolved metals derived from oligotrophic hard water, Water Res., 14: 1239.

    Article  CAS  Google Scholar 

  • Sugimura, Y., Suzuki, Y., and Miyake, Y., 1978, Chemical forms of minor metallic elements in the ocean, J. Oceanogr. Soc. Japan, 34: 93.

    Google Scholar 

  • Sylva, R.N., and Davidson, M.R., 1979, The hydrolysis of metal ions. Part I. Copper ( II ), J. Chem. Soc., Dalton Trans., 232.

    Google Scholar 

  • Van den Berg, C.M.G., Wong, P.T.S., and Chau, Y.K., 1979, Measurement of complexing materials excreted from algae and their ability to ameliorate copper toxicity, J. Fish. Res. Board Can., 36: 901.

    Google Scholar 

  • Wershaw, R.L., and Pickney, D.J., 1977, Chemical structure of humic acids, Part 2. The molecular aggregation of some humic acid fractions in N, N-dimethylformamide, J. Res. U.S. Geol. Surv., 5: 571.

    Google Scholar 

  • Whitfield, M., and Turner, D.R., 1979, Critical assessment of the relationship between biological, thermodynamic and electrochemical availability, in: “Chemical Modeling in Aqueous Systems“, E.A. Jenne, ed., ACS Symposium Series 93, American Chemical Society, Washington, D.C.

    Google Scholar 

  • Young, J., Gurtisen, J.M., Apts, C.W., and Crecelius, E.A., 1979, The relationship between the copper complexing capacity of seawater and copper toxicity in shrimp zoeae, Mar. Environ. Res., 2: 265.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Batley, G.E. (1983). The Current Status of Trace Element Speciation Studies in Natural Waters. In: Leppard, G.G. (eds) Trace Element Speciation in Surface Waters and Its Ecological Implications. NATO Conference Series, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8234-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8234-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8236-2

  • Online ISBN: 978-1-4684-8234-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics