Is Analytically-Defined Chemical Speciation the Answer We Need to Understand Trace Element Transfer Along a Trophic Chain?

  • Renato Baudo
Part of the NATO Conference Series book series (NATOCS, volume 6)


In the last few years, a large amount of research on trace element emission and dispersion through aquatic ecosystems has underlined the need for more detailed studies on the function and role of these elements in the various ecological compartments. Following the well-known cases of injuries to man from Hg and Cd, all “heavy metals” and related trace elements have been regarded as powerful toxicants, potentially dangerous even for human health. Still more recently, with the advent of an ever increasing mass of data, it has been recognized that the impact of these elements on aquatic environments, with regard to undesirable effects on aquatic life, is mostly controlled by their physico-chemical status rather than by their “total” concentration in water.


High Pressure Liquid Chromatography Mytilus Edulis Trophic Chain Aquatic Food Chain Particulate Suspended Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amiard-Triquet, C. and Saas, A., 1979, Modalités de la contamination de deux chaînes trophiques dulçaquicoles par le cobalt 60. II. Contamination simultanée des organismes par l’eau et la nourriture, Water Air Soil Pollut., 12: 141.Google Scholar
  2. Aoyama, I., Inoue, Y. and Inoue, Y., 1978, Experimental study on the concentration process of trace element through a food chain from the viewpoint of nutrition ecology, Water Res., 12: 831.CrossRefGoogle Scholar
  3. Baudo, R., 1980, Chemical speciation of trace elements in the aquatic environments: a literature review, Mem. Ist. Ital. Idrobiol., 39: in press.Google Scholar
  4. Boudou, A., Delarche, A., Ribeyre, F. and Marty, R., 1979, Bioaccu-mulation and bioamplification of mercury compounds in a second level consumer, Gambusia affinis. Temperature effects, Bull. Environ. Contam. Toxicol., 22: 813.Google Scholar
  5. Bourg, A., 1979, Spéciation chimique des métaux traces dans les syst-èmes aquatiques. Importance de l’interface solide-solution, J. Français Hydrol., 10: 159.Google Scholar
  6. Brezonik, P.L., 1974, Analysis and speciation of trace metals in water supplies, in: “Aqueous-Environmental Chemistry of Metals”Google Scholar
  7. A.J. Rubin, ed., Ann Arbor Science Publ., Ann Arbor, Michigan.Google Scholar
  8. Brooks, R.R. and Rumsby, H.G., 1965, The biogeochemistry of trace element uptake by some New Zealand bivalves, Limnol. Oceanogr., 10: 521.Google Scholar
  9. Brown, B.E., 1976, Observations on the tolerance of the isopod AsellusGoogle Scholar
  10. meridianus Rac. to copper and lead, Water Res., 10:555.Google Scholar
  11. Brown, B.E., 1977, Uptake of copper and lead by a metal-tolerant iso-pod Asellus meridianus Rac., Freshw. Biol., 7: 235.Google Scholar
  12. Buchanan, J.B., Brown, B.E., Coombs, T.L., Pirie, B.J.S. and Allen, J.A., 1980, The accumulation of ferric iron in the guts of some spatangoid echinoderms, J. Mar. Biol. Ass. U.K., 60: 631.Google Scholar
  13. Chau, Y.K., Wong, P.T.S., Bengert, G.A. and Kramar, 0., 1979, Deter-mination of tetraalkyllead compounds in water, sediments, and fish samples, Anal. Chem., 51: 186.Google Scholar
  14. Chau, Y.K., Wong, P.T.S., Kramar, O., Bengert, G.A., Cruz, R.B., Kin-rade, J.O., Lye, J. and van Loon, J.C., 1980, Occurrence of tetraalkyllead compounds in the aquatic environment, Bull. Environ. Contam. Toxicol., 24: 265.Google Scholar
  15. Chou, C.L., Uthe, J.F. and Zook, E.G., 1978, Polarographic studiesGoogle Scholar
  16. on the nature of cadmium in scallop, oyster, and lobster, J. Fish. Res. Board Can., 35: 409.Google Scholar
  17. Curtis, E.H., Beauchamp, J.J. and Blaylock, B.G., 1977, Application of various mathematical models to data from the uptake of methyl mercury in bluegill sunfish ( Lepomis macrochirus),Ecol. Model. 3: 273.Google Scholar
  18. Dixon, D.G. and Sprague, J.B., 1981, Copper bioaccumulation and hepatoprotein synthesis during acclimation to copper by juvenile rainbow trout, Aquat. Toxicol., 1: 69.Google Scholar
  19. Ellgehausen, H., Guth, J.A. and Esser, H.O., 1980, Factors determining the bioaccumulation potential of pesticides in the individual compartments of aquatic food chains, Ecotoxicol. Environ. Safety, 4: 134.Google Scholar
  20. Evans, M.L., 1980, Copper accumulation in the crayfish ( Orconectes rusticus ), Bull. Environ. Contam. Toxicol., 24: 916.Google Scholar
  21. Fagerström, T., Kurtén, R. and Asell, B., 1975, Statistical parameters as criteria in model evaluation: kinetics of mercury accumulation in pike Esox lucius, Oikos, 26: 109.CrossRefGoogle Scholar
  22. Foley, R.E., Spotila, J.R., Giesy, J.P. and Wall, C.H., 1978, Arsenic concentrations in water and fish from Chautauqua Lake, New York, Env. Biol. Fish., 3: 361.Google Scholar
  23. Gächter, R. and Geiger, W., 1979, MELIMEX, an experimental heavy metal pollution study: Behaviour of heavy metals in an aquatic food chain, Schweiz. Z. Hydrol., 41: 277.Google Scholar
  24. George, S.G., Pirie, B.J.S. and Coombs, T.L., 1976, The kinetics of accumulation and excretion of ferric hydroxide in Mytilus edulis ( L.) and its distribution in the tissues, J. Exp. Mar. Biol. Ecol., 23: 71.Google Scholar
  25. George, S.G., Pirie, B.J.S., Cheyne, A.R., Coombs, T.L. and Grant, P.T., 1978, Detoxication of metals by marine bivalves: an ultra-structural study of the compartmentation of copper and zinc in the oyster, Mar. Biol., 45: 147.Google Scholar
  26. George, S.G. and Pirie, B.J.S., 1980, Metabolism of zinc in the mussel, Mytilus edulis (L.): A combined ultrastructural and biochemical study, J. Mar. Biol. Ass. U.K., 60: 575.Google Scholar
  27. Giesy, J.P., Bowling, J.W. and Kania, H.J., 1980, Cadmium and zinc accumulation and elimination by freshwater crayfish, Arch. Environ. Contam. Toxicol., 9: 683.Google Scholar
  28. Glandon, R.P. and McNabb, C.D., 1978, The uptake of boron by Lemna minor, Aquat. Bot., 4: 53.Google Scholar
  29. Gommes, R. and Muntau, H., 1975, La distribution de quelques métaux lourds (Zn, Cu, Cr, Ni, Mn, Co) dans la zone littorale des bassins sud et de Pallanza du lac Majeur, Mem. Ist. Ital. Idrobiol., 32: 245.Google Scholar
  30. Hall, A., 1980, Heavy metal co-tolerance in a copper-tolerant population of the marine fouling alga, Ectocarpus siliculosus ( Dillw.) Lyngbye, New Phytol., 85: 73.Google Scholar
  31. Hall, A., 1981, Copper accumulation in copper-tolerant and non-tolerant populations of the marine fouling alga, Ectocarpus siliculosus ( Dillw.) Lyngbye, Botanica Mar., 24: 223Google Scholar
  32. Harding, J.P.C. and Whitton, B.A., 1981, Accumulation of zinc, cad-mium and lead by field populations of Lemanea, Water Res., 15:301. Hercules, D.M., Cox, L.E., Onisick, S., Nichols, G.D. and CarverGoogle Scholar
  33. J.C., 1973, Electron spectroscopy (ESCA): use for trace analysis, Anal. Chem., 45: 1973.Google Scholar
  34. Heyraud, M. and Cherry, R.D., 1979, Polonium-210 and lead-210 in marine food chains, Mar. Biol., 52: 227.Google Scholar
  35. Hobden, D.J., 1969, Iron metabolism in Mytilus edulis. II. Uptake and distribution of radioactive iron, J. Mar. Biol. Ass. U.K., 49: 661.Google Scholar
  36. Horowitz, A. and Presley, B.J., 1977, Trace metal concentrations and partitioning in zooplankton, neuston, and benthos from the South Texas Outer Continental Shelf, Arch. Environ. Contam. Toxicol., 5: 241.Google Scholar
  37. Isensee, A.R., Kearney, P.C., Woolson, P.C., Jones, G.E. and Williams, V.P., 1973, Distribution of alkyl arsenicals in model ecosystem, Environ. Sci. Technol., 7: 841.Google Scholar
  38. Jernelöv, A. and Lann.,H., 1971, Mercury accumulation in food chains, Oikos, 22: 403.CrossRefGoogle Scholar
  39. Jorgensen, S.E., 1979, Modelling the distribution and effect of heavy metals in an aquatic ecosystem, Ecol. Model., 6: 199.Google Scholar
  40. Kimura, Y., Honda, Y. and Katsurayama, K., 1979, Comparative uptake and elimination of radiocobalt in organic complexed and ionic forms by mussel, Mytilisepta virgatus, J. Radiat. Res., 20: 291.Google Scholar
  41. Laties, G.G., 1959, Active transport of salt into plant tissue, Annu. Rev. Plant Physiol., 10: 87.Google Scholar
  42. Laube, V., Ramamoorthy, S. and Kushner, D.J., 1979, Mobilization and accumulation of sediment-bound heavy metals by algae, Bull. Environ. Contam. Toxicol., 21: 763.Google Scholar
  43. Leppard, G.G., Massalski, A. and Lean, D.R.S., 1977, Electron-opaque microscopic fibrils in lakes: their demonstration, their biological derivation and their potential significance in the redistribution of cations, Protoplasma, 92: 289.CrossRefGoogle Scholar
  44. Li, W.K.W., 1980, Cellular accumulation and distribution of cadmiumGoogle Scholar
  45. in Isochrysis galbana during growth inhibition and recovery, J. Plankton Res., 2: 283.Google Scholar
  46. Luoma, S.N. and Jenne, E.A., 1976, Estimating bioavailability of sediment-bound trace metals with chemical extractants, in: “Trace Substances in Environmental Health - X”, D.D. Hemphill, ed., Univ. of Missouri Press, Columbia, Missouri.Google Scholar
  47. Martoja, M., Tue, V.T. and Elkam, B., 1980, Bioaccumulation du cuivre chez Littorina littorea (L.) (Gastéropode Prosobranche): signification physiologique et écologique, J. Exp. Mar. Biol. Ecol., 43: 251.Google Scholar
  48. McFarlane, G.A. and Franzin, W.G., 1980, An estimation of Cd, Cu and Hg concentrations in livers of northern pike, Esox lucius, and white sucker, Catostomus commersoni, from five lakes near a base metal smelter at Flin Flon, Manitoba, Can. J. Fish. Aquat. Sci., 37: 1573.Google Scholar
  49. Miramand, P., Guary, J.C. and Fowler, S.W., 1980, Vanadium transfer in the mussel Mytilus galloprovincialis, Mar. Biol., 56: 281.Google Scholar
  50. Miramand, P., Guary, J.C. and Fowler, S.W., 1981, Uptake, assimilation, and excretion of vanadium in the shrimp, Lysmata seticaudata (Risso), and the crab, Carcinus maenas ( L. ), J. Exp. Mar. Biol. Ecol., 49: 267.Google Scholar
  51. Neff, J.W., Foster, R.S. and Slowey, J.F., 1978, “Availability of Sediment-adsorbed Heavy Metals to Benthos with Particular Emphasis on Deposit-feeding in Fauna”, U.S. Dept. Comm. Natl. Tech. Inf. Service AD/A-061, 152: 286 pp.Google Scholar
  52. Norris, P.R. and Kelly, D.P., 1979, Accumulation of metals by bacteria and yeasts, Dev. Ind. Microbiol., 20: 299.Google Scholar
  53. Norstrom, R.J., McKinnon, A.E., deFreitas, A.S.W., 1976, A bioenergetics-based model for pollutant accumulation by fish. Simula-tion of PCB and methylmercury residue levels in Ottawa River yellow perch ( Perca flavescens ), J. Fish. Res. Board Can., 33: 248.Google Scholar
  54. Papadopoulou, C., Zafiropoulos, D., Hadjistelios, I., Vassilaki-Grimani, M.,and Yannopoulos, C., 1978, Trace elements in pelagic organisms and a pelagic foodchain of the Aegean Sea, IVes Journées Etud. Pollutions, Antalya, C.I.E.S.M., 231–232.Google Scholar
  55. Patrick, F.M. and Loutit, M.W., 1977, The uptake of heavy metals by epiphytic bacteria on Alisma plantago-aquatica, Water Res., 11: 699.CrossRefGoogle Scholar
  56. Phillips, D.J.H., 1977, The common mussel Mytilus edulis as an indicator of trace metals in Scandinavian waters. I. Zinc and cadmium, Mar. Biol., 43: 283.Google Scholar
  57. Phillips, G.R. and Russo, R.C., 1978, “Metal Bíoaccumulation in Fishes and Aquatic Invertebrates: A Literature Review”, (U.S.) EPA–600/3–78–103, 116 pp.Google Scholar
  58. Radoux,.D. and Bouquegneau, J.M., 1979, Uptake of mercuric chloride from sea water by Serranus cabrilla, Bull. Environ. Contam. Toxicol., 22: 771.Google Scholar
  59. Seip, K.L., 1979, A mathematical model for the uptake of heavy metals in benthic algae, Ecol. Model., 6: 183.Google Scholar
  60. Spear, P.A. and Pierce, R.C., 1979, “Copper in the Aquatic Environment: Chemistry, Distribution, and Toxicology”, Publ. Environ. Sec., Ottawa, Canada, No. NRCC 16454, 227 pp.Google Scholar
  61. Steinberg, C. and Herrmann, A., 1980, Utilization of Dissolved Metal Organic Compounds by Freshwater Microorganisms, Paper presented at 21st. SIL Congress, Kyoto, Japan, August, 1980.Google Scholar
  62. Stoeppler, M. and Brandt, K., 1979, Comparative studies on trace metal levels in marine biota. II. Trace metals in krill, krill products, and fish from the Antarctic Scotia Sea, Z. Lebensm. Unters. Forsch., 169: 95.Google Scholar
  63. Stoeppler, M. and Nürnberg, H.W., 1979, Comparative studies on trace metal levels in marine biota. III. Typical levels and accumulation of toxic trace metals in muscle tissue and organs of marine organisms from different European Seas, Ecotoxicol. Environ. Safety, 3: 335.Google Scholar
  64. Unlü, M.Y., 1979, Chemical transformation and flux of different forms of arsenic in the crab Carcinus maenas, Chemosphere, 5:269. Unlü, M.Y. and Fowler, S.W., 1979, Factors affecting the flux of arsenic through the mussel Mytilus galloprovincialis, Mar. Biol., 51: 209.Google Scholar
  65. Putte, I., Lubbers, J. and Kolar, Z., 1981, Effect of pH on uptake, tissue distribution and retention of hexavalent chromium in rainbow trout ( Salmo gairdneri ), Aquat. Toxicol., 1: 3.Google Scholar
  66. Loon, J.C., 1979, Metal speciation by Chromatography/Atomic spectrometry, Anal. Chem., 51: 1139A.Google Scholar
  67. Veith, G.D., DeFoe, D.L. and Bergstedt, B.V., 1979, Measuring and estimating the bioconcentration factor of chemicals in fish, J. Fish. Res. Board Can., 36: 1040.Google Scholar
  68. Heidemarie, K., 1979, Die Belastung von Wattenorganismen im ElbeAestuar durch Radionuklide: Versuche zur Kontamination von Nereis diversicolor 0.F. Müller mit Co-57, Arch. Hydrobiol., Suppl., 43: 265.Google Scholar
  69. Williams, D.R. and Giesy, J.P., 1978, Relative importance of food and water sources to cadmium uptake by Gambusia affinis ( Poeciliidae ), Environ. Res., 16: 326.Google Scholar
  70. Zitko, V. and Carson, W.G., 1976, A mechanism of the effects of water hardness on the lethality of heavy metals to fish, Chemosphere, 5: 299.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Renato Baudo
    • 1
  1. 1.CNR - Istituto Italiano di IdrobiologiaVerbaniaItaly

Personalised recommendations