Biological Aspects of Trace Element Speciation in the Aquatic Environment

  • Maarten Smies
Part of the NATO Conference Series book series (NATOCS, volume 6)


That different forms of a chemical element are likely to exert different biological effects in the natural environment would appear somewhat of a truism. Considering, however, that heavy metals are well established as environmental pollutants (Förstner and Wittmann, 1979), it is surprising that relatively little attention has been paid to the question of metal speciation in relation to biological effects. Recent reviews of metal pollution in the aquatic environment (Bryan, 1976; Prosi, 1979) have touched upon metal speciation as related to toxicity, but the aquatic toxicological literature by and large ignores it. An exception must be made for phytoplankton research, where worthwhile efforts have been made to properly define culture media (Morel et al., 1979) and to apply chemical speciation models to observations on phytoplankton growth (Jackson and Morgan, 1978). Otherwise, it would appear, few publications specifically address the above question in a more than rudimentary way. This is not meant to imply criti cism of scientists working on heavy metals; it is merely an appraisal of the current situation.


Heavy Metal Biological Aspect Estuarine Coastal Thalassiosira Pseudonana Define Culture Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, D.M.,and Morel, F.M.M., 1978, Copper sensitivity of Gonyaulax tamarensis, Limnol. Oceanogr., 23: 283.CrossRefGoogle Scholar
  2. Anderson, M.A., Morel, F.M.M., and Guillard, R.R.L., 1978, Growth limitation of a coastal diatom by low zinc ion activity,Nature, 276: 70.CrossRefGoogle Scholar
  3. Andreae, M.O., 1978, Distribution and speciation of arsenic in natural waters and some marine algae, Deep-Sea Res., 25: 391.CrossRefGoogle Scholar
  4. Andreae, M.O., 1979, Arsenic speciation in seawater and interstitial waters: The influence of biological-chemical interactions on the chemistry of a trace element, Limnol. Oceanogr., 24: 440.CrossRefGoogle Scholar
  5. Andreae, M.O.,and Klumpp, D., 1979, Biosynthesis and release of organoarsenic compounds by marine algae, Environ. Sci. Technol., 13: 738.CrossRefGoogle Scholar
  6. Baker, M.D., Wong, P.T.S., Chau, Y.K., Mayfield, C.I.,and Innis, W.E., 1981, Methylation of lead, mercury, arsenic and selenium in the acidic aquatic environment, in: “Heavy Metals in the Environment”, CEP Consultants, Edinburgh.Google Scholar
  7. Bartlett, P.D.,and Craig, P.J., 1981, Total mercury and methyl mercury levels in British estuarine sediments - II, Water Res., 15: 37.CrossRefGoogle Scholar
  8. Beijer, K.,and Jernelov, A., 1978, Ecological aspects of mercury-selenium interactions in the marine environment, Environ. Health Perspect., 25: 43.Google Scholar
  9. Blair, W.R., Jackson, J.A., Olson, G.J., Brinckman, F.E.,and Iverson, W.P., 1981, Biotransformation of tin, in: “Heavy Metals in the Environment”, CEP Consultants, Edinburgh.Google Scholar
  10. Boddington, M.J., DeFreitas, A.S.W.,and Miller, D.R., 1979, The effect of benthic invertebrates on the clearance of mercury from sediments, Ecotoxicol. Environ. Safety, 3: 236.CrossRefGoogle Scholar
  11. Bothner, M.H., Jahnke, R.A., Peterson, M.L.,and Carpenter, R., 1980, Rate of mercury loss from contaminated estuarine sediments, Geochim. Cosmochim. Acta, 44: 273.CrossRefGoogle Scholar
  12. Boulègue, J.,and Renard, D., 1980, Catalyse bactérienne de l’oxyda¬tion du manganèse manganeux dans les eaux. Conséquences géo¬chimiques, C.R. Acad. Sc. Paris, D, 290: 1165.Google Scholar
  13. Boyle, E.A., Sclater, F.,and Edmond, J.M., 1976, On the marine geo¬chemistry of cadmium, Nature, 263: 42.CrossRefGoogle Scholar
  14. Branica, M.,and Konrad, Z., eds., 1980, “Lead in the Marine Environ¬ment”, Pergamon Press, Oxford.Google Scholar
  15. Bruland, K.W., Knauer, G.A.,and Martin, J.H., 1978, Cadmium in north¬east Pacific waters, Limnol. Oceanogr., 23: 618.CrossRefGoogle Scholar
  16. Bryan, G.W., 1976, Heavy metal pollution in the sea, in: “Marine Pollution”, R. Johnston, ed., Academic Press, London.Google Scholar
  17. Chau, Y.K., Wong, P.T.S., Kramar, O.,and Bengert, G.A., 1981, Methylation of tin in the aquatic environment, in: “Heavy Metals in the Environment”, CEP Consultants, Edinburgh.Google Scholar
  18. Chau, Y.K., Wong, P.T.S., Silverberg, B.A., Luxon, P.L.,and Bengert, G.A., 1976, Methylation of selenium in the aquatic environment, Science, 192: 1130.Google Scholar
  19. Craig, P., 1981, Biomethylation: Pollution amplified, New Sci., 90: 694.Google Scholar
  20. Cranston, R.E.,and Murray, J.W., 1980, Chromium species in the Columbia River and estuary, Limnol. Oceanogr., 25: 1104.CrossRefGoogle Scholar
  21. Davies, I.M., Graham, W.C.,and Pirie, J.M., 1979, A tentative determination of methylmercury in seawater, Mar. Chem., 7: 111.CrossRefGoogle Scholar
  22. Duinker, J.C., Wollast, R.,and Billen, G., 1979, Estuarine Coastal Mar. Sci., 9: 727.CrossRefGoogle Scholar
  23. Dyrssen, D.,and Wedborg, M., 1980, Major and minor elements, chemical speciation in estuarine waters, in: “Chemistry and Biogeo¬chemistry of Estuaries”, E. Olausson and I. Cato, eds., Wiley, Chichester.Google Scholar
  24. Eaton, A., 1979, Removal of ‘soluble’ iron in the Potomac river estuary, Estuarine Coastal Mar. Sci., 9: 41.CrossRefGoogle Scholar
  25. Edmonds, J.S.,and Francesconi, K.A., 1981, Arseno-sugars from brown kelp (Ecklonia radiata) as intermediates in cycling of arsenic in a marine ecosystem, Nature, 289: 602.CrossRefGoogle Scholar
  26. Emerson, S., Cranston, R.E.,and Liss, P.S., 1979, Redox species in a reducing fjord: Equilibrium and kinetic considerations,Deep-Sea Res., 26A: 859.CrossRefGoogle Scholar
  27. Engel, D.W.,and Fowler, B.A., 1979, Factors influencing cadmium accumulation and its toxicity to marine organisms,Environ. Health Perspect., 28: 81.CrossRefGoogle Scholar
  28. Engel, D.W.,and Sunda, W.G., 1979, Toxicity of cupric ion to eggs of the spot Leiostomus xanthurus and the Atlantic silverside Menidia menidia, Mar. Biol., 50: 121.CrossRefGoogle Scholar
  29. Förstner, U.,and Wittmann, G.T.W., 1979, “Metal Pollution in the Aquatic Environment”, Springer-Verlag, Berlin.Google Scholar
  30. Gächter, R.,and Mâres, A., 1979, MELIMEX, an experimental heavy metal pollution study: Effects of increased heavy metal loads on phytoplankton communities, Schweiz. Z. Hydrol., 41:228.Google Scholar
  31. Gächter, R., and Urech, J., in: this volume.Google Scholar
  32. George, S.G.,and Coombs, T.L., 1977, The effects of chelating agents on the uptake and accumulation of cadmium by Mytilus edulis, Mar. Biol., 39: 261.CrossRefGoogle Scholar
  33. Giesy, J.P., Briese, L.A., and Leversee, G.J., 1978, Metal binding capacity of selected Maine surface waters, Environ. Geol., 2: 257.CrossRefGoogle Scholar
  34. Grove, J.R., 1980, Investigations into the formation and behaviour of aqueous solutions of lead alkyls, in: “Lead in the Marine Environment”, M. Branica and Z. Konrad, eds., Pergamon Press, Oxford.Google Scholar
  35. Hart, B.T., 1981, Trace metal complexing capacity of natural waters: A review, Environ. Technol. Lett., 2: 95.CrossRefGoogle Scholar
  36. Hoffmann, M.R., and Eisenreich, S.J., 1981, Development of a com puter-generated equilibrium model for the variation of iron and manganese in the hypolimnion of Lake Mendota, Environ. Sci. Technol., 15: 339.CrossRefGoogle Scholar
  37. Howard, A.G., and Nickless, G., 1978, Heavy metal complexation in polluted molluscs. 3. Periwinkles (Littorina littorea), cockles (Cardium edule) and scallops (Chlamys opercularis), Chem.-Biol. Interact., 23: 227.CrossRefGoogle Scholar
  38. IRPTC, 1978, “Data Profiles for Chemicals for the Evaluation of their Hazards to the Environment of the Mediterranean Sea, Vol. I”, (IRPTC Data Profile Series 1 ), UNEP, Geneva.Google Scholar
  39. Jackson, G.A., and Morgan, J.J., 1978, Trace metal-chelator inter¬actions and phytoplankton growth in seawater media: Theoretical analysis and comparison with reported observations, Limnol. Oceanogr., 23: 268.Google Scholar
  40. Jennings, J.R., Rainbow, P.S., and Scott, A.G., 1979, Studies on the uptake of cadmium by the crab Carcinus maenas in the laboratory. II. Preliminary investigation of cadmium-binding proteins, Mar. Biol., 50: 141.CrossRefGoogle Scholar
  41. Klumpp, D.W., and Peterson, P.J., 1981, Chemical characteristics of arsenic in a marine food chain,Mar. Biol., 62: 297.CrossRefGoogle Scholar
  42. Kudo, A., Miller, D.R., Akagi, H., Mortimer, D.C., DeFreitas, A.S. Nagase, H., Townsend, D.R., and Warrock, R.G., 1978, The role of sediments on mercury transport (total-and methyl-) in a river system, Prog. Water Technol., 10: 329.Google Scholar
  43. Luoma, S.N., 1977, The dynamics of biologically available mercury in a small estuary, Estuarine Coastal Mar. Sci., 5: 643.CrossRefGoogle Scholar
  44. McKnight, D.M., and Morel, F.M.M., 1980, Copper complexation by siderophores from filamentous blue-green algae, Limnol. Oceanogr., 25: 62.CrossRefGoogle Scholar
  45. Maddock, B.G., and Taylor, D., 1980, The acute toxicity and bio accumulation of some lead alkyl compounds in marine animals, in: “Lead in the Marine Environment”, M. Branica and Z. Konrad, eds., Pergamon Press, Oxford.Google Scholar
  46. Mantoura, R.F.C., 1981, Organo-metallic interactions in natural waters, in: “Marine Organic Chemistry”, E.K. Duursma and R. Dawson, eds., Elsevier, Amsterdam.Google Scholar
  47. Mantoura, R.F.C., Dickson, A., and Riley, J.P., 1978, The complexation of metals with humic materials in natural waters, Estuarine Coastal Mar. Sci., 6: 387.CrossRefGoogle Scholar
  48. Measures, C.I., and Burton, J.D., 1978, Behaviour and speciation of dissolved selenium in estuarine waters, Nature, 273: 293.CrossRefGoogle Scholar
  49. Measures, C.I., and Burton, J.D., 1980, The vertical distribution and oxidation states of dissolved selenium in the northeast Atlantic Ocean and their relationship to biological processes, Earth Planet. Sci. Lett., 46: 385.CrossRefGoogle Scholar
  50. Measures, C.I., McDuff, R.E., and Edmond, J.M., 1980, Selenium redox chemistry at GEOSECS 1 reoccupation, Earth Planet. Sci. Lett., 49: 102.CrossRefGoogle Scholar
  51. Mercury, 1976, “Environmental Health Criteria 1”, WHO, Genéve.Google Scholar
  52. Moore, R.H., Burton, J.D., Williams, P.J. Le B., and Young, M.L., 1979, The behaviour of dissolved organic material, iron and manganese during estuarine mixing, Geochim. Cosmochim. Acta, 43: 919.CrossRefGoogle Scholar
  53. Morel, F.M.M., Rueter, J.G., Anderson, D.M., and Guillard, R.R.L., 1979, Aquil: A chemically defined phytoplankton culture medium for trace metal studies, J. Phycol., 15: 135.CrossRefGoogle Scholar
  54. Morris, A.W., and Bale, A.J., 1979, Effect of rapid precipitation of dissolved Mn in river water on estuarine Mn distributions, Nature, 279: 318.CrossRefGoogle Scholar
  55. Morris, A.W., Mantoura, R.F.C., Bale, A.J., and Howland, R.J.M., 1978, Very low salinity regions of estuaries: Important sites for chemical and biological reactions, Nature, 274: 678.CrossRefGoogle Scholar
  56. Nakayama, E., Tokoro, H., Kuwamoto, T., and Fujinaga, T., 1981, Dissolved state of chromium in seawater, Nature, 290: 768.CrossRefGoogle Scholar
  57. Noel-Lambot, F., 1981, Presence in the intestinal lumen of marine fish of corpuscles with a high cadmium-, zinc-and copper-binding activity: A possible mechanism of heavy metal tolerance,Mar. Ecol. Prog. Ser., 4: 175.CrossRefGoogle Scholar
  58. Noel-Lambot, F., Bouquegneau, J.M., Frankenne, F., and Disteche, A., 1978, Le role des métallothioneines dans le stockage des métaux lourds chez les animaux marins, Rev. Int. 0c6anogr. Méd., 49: 13.Google Scholar
  59. Phillips, D.J.H., 1980, “Quantitative Aquatic Biological Indicators”, Applied Science Publishers, London.Google Scholar
  60. Prosi, F., 1979, Heavy metals in organisms. in: “Metal Pollution in the Aquatic Environment”, U. Förstner and G.T.W. Wittmann, Springer-Verlag, Berlin.Google Scholar
  61. Reisinger, K., Stoeppler, M., and Nürnberg, H.W., 1981a, Evidence for the absence of biological methylation of lead in the environ¬ment, Nature, 291: 228.CrossRefGoogle Scholar
  62. Reisinger, K., Stoeppler, M., and Nürnberg, H.W., 1981b, On the bio¬logical methylation of lead, mercury, methylmercury and arsenic in the environment, in: “Heavy Metals in the Environment”, CEP Consultants, Edinburgh.Google Scholar
  63. Rice, M.A., and Chien, P.K., 1979, Uptake, binding and clearance of divalent cadmium in Glycera dibranchiata (Annelida: Polychaeta), Mar. Biol., 53: 33.CrossRefGoogle Scholar
  64. Röderer, G., 1981, Fate and toxicity of tetraalkyl lead and its derivatives in aquatic environments, in: “Heavy Metals in the Environment”, CEP Consultants, Edinburgh.Google Scholar
  65. Roesijadi, G., 1981, The significance of low molecular weight, me¬tallothionein-like proteins in marine invertebrates: Current status, Mar. Environ. Res., 4: 167.CrossRefGoogle Scholar
  66. Rueter, J.G., and Morel, F.M.M., 1981, The interactions between zinc deficiency and copper toxicity as it affects the silicic acid uptake mechanisms in Thalassiosira pseudonana, Limnol. Oceanogr., 26: 67.CrossRefGoogle Scholar
  67. Sanders, J.G., 1978, Enrichment of estuarine phytoplankton by the addition of dissolved manganese, Mar. Environ. Res., 1: 59.CrossRefGoogle Scholar
  68. Sanders, J.G., 1979, Effects of arsenic speciation and phosphate concentration on arsenic inhibition of Skeletonema costatum (Bacillariophyceae), J. Phycol., 15: 422.Google Scholar
  69. Sanders, J.G., 1980, Arsenic cycling in marine ecosystems, Mar. Environ. Res., 3: 257.CrossRefGoogle Scholar
  70. Sanders, J.G., and Windom, H.L., 1980, The uptake and reduction of arsenic species by marine algae, Estuarine Coastal Mar. Sci., 10: 555.CrossRefGoogle Scholar
  71. Saxena, J., and Howard, P.H., 1977, Environmental transformation of alkylated and inorganic forms of certain metals, Adv. Appl. Microbiol., 21: 185.CrossRefGoogle Scholar
  72. Seeliger, U., and Edwards, P., 1979, Fate of biologically accumulated copper in growing and decomposing thallí of two benthic red marine algae, J. Mar. Biol. Assoc. U.K., 59: 227.CrossRefGoogle Scholar
  73. Sipos, L., Raspor, B., Nürnberg, H.W., and Pytkowicz, R.M., 1980, Interaction of metal complexes with coulombic ion-pairs in aqueous media of high salinity, Mar. Chem., 9: 37.CrossRefGoogle Scholar
  74. Sipos, L., Valenta, P., Nürnberg, H.W., and Branica, M., 1980, Voltammetric determination of the stability constants of the predominant labile lead complexes in seawater, in: “Lead in the Marine Environment”, M. Branica and Z. Konrad, eds., Pergamon Press, Oxford.Google Scholar
  75. Summers, A.O., and Silver, S., 1978, Microbial transformations of metals, Ann. Rev. Microbiol., 32: 637.CrossRefGoogle Scholar
  76. Thomas, W.H., and Seibert, D.L.R., 1977, Effects of copper on the dominance and diversity of algae: Controlled ecosystem pollution experiment, Bull. Mar. Sci., 27: 23.Google Scholar
  77. Topping, G., and Davies, I.M., 1981, Methylmercury production in the marine water column, Nature, 290: 243.CrossRefGoogle Scholar
  78. Tuschall, J.R., and Brezonik, P.L., 1980, Characterization of organic nitrogen in natural waters: Its molecular size, protein content, and interactions with heavy metals, Limnol. Oceanogr., 25: 495.Google Scholar
  79. Vaccaro, R.F., in: this volume.Google Scholar
  80. van der Putte, I., 1981, “An Assessment of the Environmental Toxicity of Hexavalent Chromium in Fish”, (Dissertation Agric. Univ.), Pudoc, Wageningen.Google Scholar
  81. Waslenchuk, D.G., 1978, The budget and geochemistry of arsenic in a continental shelf environment, Mar. Chem., 7: 39.CrossRefGoogle Scholar
  82. Wollast, R., Billen, G., and Duinker, J.C., 1979, Behaviour of man¬ganese in the Rhine and Scheldt estuaries. I. Physico-chemical aspects, Estuarine Coastal Mar. Sci., 9: 161.CrossRefGoogle Scholar
  83. Wood, J.M., 1974, Biological cycles for toxic elements in the environ¬ment, Science, 183: 1049.CrossRefGoogle Scholar
  84. Wrench, J.J., and Addison, R.F., 1981, Reduction, methylation, and incorporation of arsenic into lipids by the marine phytoplankton Dunaliella tertiolecta, Can. J. Fish. Aquat. Sci., 38: 518.CrossRefGoogle Scholar
  85. Wrench, J., Fowler, S.W., and Unlit, M.Y., 1979, Arsenic metabolism in a marine food chain,Mar. Pollut. Bull., 10: 18.CrossRefGoogle Scholar
  86. Wright, D.A., 1977, The uptake of cadmium into the haemolymph of the shore crab, Carcinus maenas(L.). The relationship with copper and other divalent ions, J. Exp. Biol., 67: 147.Google Scholar
  87. Yeats, P.A., Sundby, B., and Brewer, J.M., 1979, Manganese recycling in coastal waters, Mar. Chem., 8: 43.CrossRefGoogle Scholar
  88. Young, J.S., Gurtisen, J.M., Apts, C.W., and Crecelius, E.A., 1979, The relationship between the copper complexing capacity of sea water and the copper toxicity in shrimp zoeae, Mar. Environ. Res., 2: 265.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Maarten Smies
    • 1
  1. 1.Delta Institute for Hydrobiological ResearchYersekeThe Netherlands

Personalised recommendations