Neuropharmacological Studies and Postulates on Excitation and Depression in the Central Nervous System

  • Wallace D. Winters


In describing the pharmacology of anesthetic agents to medical students, we present a schema indicating that anesthesia is a progression of decreasing states of irritability leading to marked depression and finally death. In contrast, increasing states of irritability represent a continuum in the opposite direction ending in convulsions and finally death. Although this two-dimensional representation of excitability and depression is useful as a teaching aid, it does not explain all dimensions of consciousness. For example, if depression is a continuum of decreasing irritability, then where does sleep fit? If sleep is synonymous with the initial anesthetic state, where does paradoxical or dream sleep (rhombencephalic sleep—RPS) fit, and how does stage II (delirium) fit into this continuum? Furthermore, how do the various excitatory states such as hyperexcitability and hallucinatory and convulsive states correlate—do they follow a recognizable continuum?


Unit Activity Anesthetic Agent Reticular Formation Dorsal Hippocampus Spindle Sleep 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moruzzi, G., and Magoun, H. W.: Brain stem reticular formation and activation of the EEG, Electroencephalog. Clin. Neurophysiol. 1: 455, 1949.Google Scholar
  2. 2.
    French, J. D., Verzeano, M., and Magoun, H. W.: A neuronal basis of the anesthetic state, Arch. Neurol. Psychiat. 69: 519, 1953.Google Scholar
  3. 3.
    Dement, W., and Kleitman, N.: Cyclic variations in EEG during sleep and their relation to eye movements, body motility and dreaming, Electroencephalog. Clin. Neurophysiol. 9: 673, 1957.CrossRefGoogle Scholar
  4. 4.
    Jouvet, M.: Telencephalic and rhombencephalic sleep in the cat, in Westenholme, G. W., and O’Conner, M. (editors): Ciba Symposium on the Nature of Sleep, J. and A. Churchill Ltd., London, 1961, p. 188.Google Scholar
  5. 5.
    Sterman, M. B., and Clemente, C.D.: Forebrain inhibitory mechanism: Cortical synchronization induced by basal forebrain stimulation, Exptl. Neurol. 6: 91, 1962.Google Scholar
  6. 6.
    Goodenough, D. R., Shapiro, A., Holden, M., and Steinschriber, L.: A comparison of “dreamers” and “nondreamers”: Eye movements, electroencephalograms, and the recall of dreams, J. Abnorm. Soc. Psych. 59: 295, 1959.CrossRefGoogle Scholar
  7. 7.
    Benoit, O., and Bloch, V.: Seuil d’excitabilité réticulaire et sommeil profond chez le chat, J. Physiol. (Paris) 52: 17, 1960.Google Scholar
  8. 8.
    Horovitz, Z. P., and Chow, M. I.: Desynchronized electroencephalogram in the deeply sleeping cat, Science 134: 945, 1961.PubMedCrossRefGoogle Scholar
  9. 9.
    Rossi, G.F., Favale, E., Hara, T., Guissani, A., and Sacco, G.: Researches on the nervous mechanisms underlying deep sleep in the cat, Arch. Ital. Biol. 99: 270, 1961.Google Scholar
  10. 10.
    Arduini, A., and Pinneo, L. R.: A methodfor the quantification of tonic activity in the nervous system, Arch. Ital. Biol. 100: 415, 1962.Google Scholar
  11. 11.
    Hess, R., Jr., Koella, W.P., and Akert, K.: Cortical and subcortical recordings in natural and aritifically induced sleep in cats, Electroencephalog. Clin. Neurophysiol. 5: 75, 1953.CrossRefGoogle Scholar
  12. 12.
    Goodman, L. S., and Gilman, A.: The pharmacological basis of therapeutics, second edition, Macmillan, New York, 1956, p. 28.Google Scholar
  13. 13.
    Rhines, R., and Magoun, H. W.: Brain stem facilitation of cortical motor response, J. Neurophysiol. 9: 219, 1946.PubMedGoogle Scholar
  14. 14.
    Evarts, E.V.: Effects of sleep and waking on activity of single units in the unrestrained cat, in Wolstenholme, G. W., and O’Connor, M. (editors): Ciba Symposium on the Nature of Sleep, J. and A. Churchill Ltd., London, 1961, p. 171.Google Scholar
  15. 15.
    Evarts, E. V.: Photically evoked responses in visual cortex units during sleep and waking, J. Neurophysiol. 26: 229, 1963.Google Scholar
  16. 16.
    Hernández-Péon, R., Scherrer, H., and Jouvet, M.: Modification of electrical activity in cochlear nucleus during “attention” in the unanesthetized cat, Science 123: 331, 1956.PubMedCrossRefGoogle Scholar
  17. 17.
    Huttenlocker, P.R.: Effects of state of arousal on click responses in the mesencephalic reticular formation, Electroencephalog. Clin. Neurophysiol. 12: 819, 1960.CrossRefGoogle Scholar
  18. 18.
    Jouany, M. M., Gerard, J., Broussole, B., Reyneir, M., Orsetti, A., Vermuth, C., and Baron, C.; Pharmacologie comparée des sels de l’acide butyrique et de l’acide 4-hydroxybutyrique, Agressol. 1: 417, 1960.Google Scholar
  19. 19.
    Laborit, H., Jouany, M. J., Gerard, J., and Fabiani, F.; Généralites concernant l’étude experimentale de l’emploi clinique du gamma-hydroxybutyrate deNa,Aggressol. 1: 397, 1960.Google Scholar
  20. 20.
    Laborit, G., Kind, A., and Regil, C. D. L.: 220 cas d’anesthesie en neuro-chirurgie avec le 4-hydroxybutyrate de sodium, Presse Med. 69: 1216, 1961.PubMedGoogle Scholar
  21. 21.
    Bessman, S. P., and Fishbein, W. M.: Gamma-hydroxybutyrate, a normal brain metabolite, Nature 200: 1207, 1963.PubMedCrossRefGoogle Scholar
  22. 22.
    Giarman, N. J., and Roth, R. W.: Differential estimation of gamma-butyrolactone and gammahydroxybutyric acid in rat blood and brain, Science 145: 583, 1964.PubMedCrossRefGoogle Scholar
  23. 23.
    Jenny, E.H., Murphee, H.B., Goldstein, L., and Pfeffer, C.C.: Behavioral and EEG effects of γ-butyrolactone and γ-hydroxybutyric acid in man, Pharmacologist 4: 166, 1962.Google Scholar
  24. 24.
    Drakontides, A.B., Schneider, J.A., and Funderburk, W.H.: Some effects of sodium gammahydroxybutyrate on the central nervous system, J. Pharmacol. Exptl. Therap. 135: 275, 1962.Google Scholar
  25. 25.
    Hosko, M. J., Jr., and Gluckman, M. I.: Neuropharmacologic analysis of the central effects of sodium 4-hydroxybutyrate (I) and gamma butyrolactone (II) in the cat, Pharmacologist 5: 254, 1963.Google Scholar
  26. 26.
    Winters, W. D.: Comparison of the average cortical and subcortical evoked response to clicks during various stages of wakefulness, slow-wave sleep and rhombencephalic sleep, Electroencephalog. Clin. Neurophysiol. 17: 234, 1964.CrossRefGoogle Scholar
  27. 27.
    Gastaut, H.: personal communications, 1964.Google Scholar
  28. 28.
    Buendia, N., Sierra, G., Goode, M., and Segundo, J. P.: Conditioned and discriminatory responses in wakeful and in sleeping cats, Electroencephalog. Clin. Neurophysiol. Suppl. 24: 199, 1963.Google Scholar
  29. 29.
    Blumenfeld, M., Suntay, R. G., and Harmal, M. H.; Sodium gamma-hydroxybutyric acid: A new anesthetic adjuvant, Anesthesia Analgesia Current Res. 41: 721, 1962.Google Scholar
  30. 30.
    Jouvet, M.: personal communications, 1964.Google Scholar
  31. 31.
    Arduini, A., and Arduini, M.G.: Effects of drugs and metabolic alterations on brain stem arousal mechanism, J. Pharmacol. 110: 76, 1954.Google Scholar
  32. 32.
    King, E. V.: Differential action of anesthetics and interneuron depressants upon EEG arousal and recruitment responses, J. Pharmacol. Exptl. Therap. 116: 404, 1956.Google Scholar
  33. 33.
    Killiam, E. K.: Drug action of the brain stem reticular formation, Pharmacol. Rev. 14 (2): 175, 1962.Google Scholar
  34. 34.
    Winters, W. D., and Spooner, C. E.: Various seizure activities, following gamma-hydroxybutyrate, Intern. J. Neuropharmacol. 4: 197, 1965.CrossRefGoogle Scholar
  35. 35.
    Winters, W. D., and Spooner, C. E.: A neurophysiological comparison of gamma-hydroxybutyrate with pentobarbital in cats, Electroencephalog. Clin. Neurophysiol. 18: 287, 1965.CrossRefGoogle Scholar
  36. 36.
    Gauthier, C., Mollica, A., and Moruzzi, G.: Physiological evidence of localized cerebellar projections to bulbar reticular formation, J. Neurophysiol. 19: 468, 1956.PubMedGoogle Scholar
  37. 37.
    Greifenstein, F. W., Devault, M., Yoshitake, J., and Gajewski, J. E.: A study of a 1-aryl cyclohexylamine for anesthesia, Anesthesia Analgesia Current Res. 37: 283, 1958.Google Scholar
  38. 38.
    Luby, E., Cohen, B.D., Rosenbaum, G., Gottlieb, J.S., and Kelly, R.: Study of new schizophrenomimetic drug-Sernyl, Arch. Neurol. Psychiat. 81: 363, 1959.Google Scholar
  39. 39.
    Heath, R. G., and Michle, A. W.: Evaluation of seven years’ experience with depth electrode studies in human patients, in Ramey, E. R., and O’Doherty, D. S. (editors): Electrical Studies on the Unanesthetized Brain, P. B. Hoeber, Inc., Medical Division of Harper and Brothers, 1960, p. 214.Google Scholar
  40. 40.
    Adey, W.R., Bell, F.R., and Dennis, B. J.: Effects of LSD-25, psylocybin, and psilocin on temporal lobe EEG patterns and learned behavior in the cat, Neurology 12: 591, 1962.PubMedCrossRefGoogle Scholar
  41. 41.
    Hagbarth, K. E., and Kerr, D.I. B.: Central influences on spinal afferent conduction, J. Neurophysiol. 17: 295, 1954.PubMedGoogle Scholar
  42. 42.
    Granit, R.: Centrifugal and antidromic effects on ganglion cells of retina, J. Neurophysiol. 18: 288, 1955.Google Scholar
  43. 43.
    Galambos, R.: Suppression of auditory nerve activity by stimulation of efferent fibres to cochlea, J. Neurophysiol. 19: 424, 1956.PubMedGoogle Scholar
  44. 44.
    Jouvet, M., and Desmedt, J.E.: Contrôle central des messages acoustiques afferents, Compt. Rend. Acad. Sci. (Paris) 243: 1916, 1956.Google Scholar
  45. 45.
    Hernandez-Péon, R., Jouvet, M., and Scherrer, H.: Auditory potentials at cochlear nucleus during acoustic habituation, Acta.Neurol. Latinoam. 3: 144, 1957.Google Scholar
  46. 46.
    Schiebel, M.E., and Schiebel, A.B.: Hallucinations and the brain stem reticular core, in: West, L. J. (ed.), Hallucinations, Grime and Stratton, New York, 1962, pp. 15–35.Google Scholar
  47. 47.
    Killam, K. F., and Killam, E.K.: Drug action on pathways involving the reticular formation, in Jasper, H. H., Procter, L. D., Knighton, R. S., Noshay, W. D., and Costello, R. T. (editors): Reticular Formation of the Brain, Little, Brown and Co., Boston, 1958, p. 111.Google Scholar
  48. 48.
    Schlag, J., Quandans, O., and Kridelka, J. C.: L’action de quelques anesthésiques etudiée par la technique des micro-électrodes sur le cerveau du chat, Arch. Intern. Pharmacodyn. 105: 493, 1956.Google Scholar
  49. 49.
    Purpura, D. P.: Electrophysiological analysis of psychotogenic drug action: I. Effect of LSD on specific afferent systems in the cat, Arch. Neurol. Psychiat. 75: 122, 1956; II. General nature of lysergic acid diethylamide (LSD) action of central synapses, Arch. Neurol. Psychiat. 75:132 (1956).Google Scholar
  50. 50.
    Chin, G. H., Killam, E.K., and Killam, K. F.: Evoked interaction patterns in chronically implanted cats following chlorpromazine, Intern. J. Neuropharmacol. 4: 47, 1965.CrossRefGoogle Scholar

Copyright information

© Plenum Press 1967

Authors and Affiliations

  • Wallace D. Winters

There are no affiliations available

Personalised recommendations