Altered Sensitivity to Centrally Active Drugs Following Lobotomy

  • Turan M. Itil
  • J. M. C. Holden
  • Ali Keskiner
  • Max Fink


Frontal-predominant EEG slow-wave activity has frequently been reported after lobotomy [1–6]. The degree and the extent of this slowing diminishes with the postoperative time interval in patients without neurological residual symptoms or without postoperative seizures. No abnormalities in the resting EEG were seen in most patients within three to six months after the operation. Investigations of the EEG pattern during sleep occurring spontaneously or induced by barbiturates have shown, however, that many months after operation certain abnormalities do occur. These include asymmetry of slow-wave activity in the frontal area [7] or a reduction of 8–12 cps spindle activity [8]. Alterations in the sleep EEGs of patients with various kinds of organic brain syndromes other than lobotomy have also been seen [9–11]. In addition, recent reports have shown that the thiopental-induced sleep EEG of subjects with organic brain syndrome may be altered further by the chronic administration of psychotropic drugs [11, 12].


Beta Activity Slow Activity Placebo Period Altered Sensitivity Spindle Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davis, P.A.: Electroencephalographic studies on three cases of lobotomy, Psychosomat. Med. 3: 38–50, 1941.Google Scholar
  2. 2.
    Hutton, E.L., Fleming, G. W. T. H., and Fox, F.E.: Early results of prefrontal leucotomy, Lancet 2. 3–7, 1941.CrossRefGoogle Scholar
  3. 3.
    Cohn, R.: Electroencephalographic study of prefrontal lobotomy. A study of focal brain injury, Arch, Neurol. Psychiat. (Chicago) 53: 283–288, 1945.Google Scholar
  4. 4.
    Stevens, H., and Mosovich, A.: Clinical and EEG investigation of prefrontal lobotomy patients, Am. J. Psychiat. 104: 73–80, 1947.PubMedGoogle Scholar
  5. 5.
    Levin, S., Greenblatt, M., Healey, M.M., and Solomon, H.C.: Electroencephalographic effects of bilateral prefrontal lobotomy, Am. J. Psychiat. 106: 174–184, 1949.PubMedGoogle Scholar
  6. 6.
    Wada, T., and Endo, K.: Electroencephalogram directlyrecorded during prefrontal lobotomy operation with description of reaction upon barbiturate narcosis, Folia Psychiat. Neurol. Japon. 5: 46–54, 1951.Google Scholar
  7. 7.
    Adams, C. L., Gibbs, E. L., and Gibbs, F.A.: Asynchronism of electrical activity of frontal lobes during sleep, Arch. Neurol. Psychiat. (Chicago) 77: 237–242, 1957.Google Scholar
  8. 8.
    Lennox, M.A., and Coolidge, J.: Electroencephalographic changes after prefrontal lobotomy, Arch. Neurol. Psychiat. (Chicago) 62: 150–161, 1949.Google Scholar
  9. 9.
    Cress, C. H., and Gibbs, E. L.: Electroencephalographic asymmetry during sleep, Diseases Nervous System 9: 327–335, 1948.Google Scholar
  10. 10.
    Henriksen, G. F., Grossman, C., and Merlis, J. K.: EEG observations in a case with thalamic syndrome, Electroencephalog. Clin. Neurophysiol. 1: 505–507, 1949.Google Scholar
  11. 11.
    Itil, T.: Elektroencephalographische Studien bei Psychosen und Psychotropen Medikamenten, Ahmet Sait Matbaasi, Istanbul, 1964.Google Scholar
  12. 12.
    Itil, T.: Die Veränderungender Pentothal-Reaktion im Elektroencephalogramm bei Psychosen unter der Behandlung mit PsychotropenDrogen, in: Proceedings of the Third World Congress of Psychiatry, University of Toronto Press, Toronto, 1961, pp. 947–950.Google Scholar
  13. 13.
    Brazier, M. A. B., and Finesinger, J.E.: Action of barbiturates on the cerebral cortex. Electroencephalographic studies, Arch. Neurol. Psychiat. (Chicago) 53: 51–58, 1945.Google Scholar
  14. 14.
    Schneider, J., and Thomalske, G.: Betrachtungen uber den Narkosemechanismus unter besonderer Berücksichtigung des Hirnstammes, Zentr. Neurochir, 16: 185–202, 1956.Google Scholar
  15. 15.
    Bente, D., and Itil, T.: EEG-Veränderungen unter chronischer Medikation von PiperazinylPhenothiazin-Derivaten, Med. Exptl. 2: 132–137, 1960.Google Scholar
  16. 16.
    Flügel, F., Bente, D., Itil, T., and Molitoris, B.: “Klinische und elektro-encephalographische Untersuchungen in der Reihe der acylierten Piperazino-Phenothiazin-Derivate,” in Rothlin, E. (editor): Neuro-Psychopharmacology, Vol. 2, Elsevier Publishing Co., Amsterdam, 1961, pp. 236–243.Google Scholar
  17. 17.
    Itil, T., Keskiner, A., and Fink, M.: Therapeutic Investigations in “Therapy Resistant” Schizophrenic Patients, Comp. Psychiat., 1967 (in press).Google Scholar
  18. 18.
    Swank, R. L., and Watson, C. W.: Effects f barbiturates and ether on spontaneous electrical activity of dog brain, J. Neurophysiol. 12: 137–160, 1949.PubMedGoogle Scholar
  19. 19.
    Mettler, F.A. (editor): Selective Partial Ablation of the Frontal Cortex: A Correlative Study of Its Effects on Human Psychotic Subjects, Paul B. Hoeber, Inc., New York, 1949.Google Scholar
  20. 20.
    Krueger, E.G., and Wayne, H. L.: Clinical and electroencephalographic effects of prefrontal lobotomy and topectomy in chronic psychoses, Arch. Neurol. Psychiat. (Chicago) 67: 661–671, 1952.Google Scholar
  21. 21.
    Henry, C. E.: Effect on the electroencephalogram of transorbital lobotomy, Electroencephalog. Clin. Neurophysiol. 2: 187–192, 1950.CrossRefGoogle Scholar
  22. 22.
    Greville, G. D., and Last, S. L.: Leucotomy as an instrument of research. Electroencephalographic studies, Proc. Roy. Soc. Med. 40: 145–147, 1947.Google Scholar
  23. 23.
    Henry, C.E., Darrow, W., and Boshes, L. D.: Psychological effects of prefrontal lobotomy, Am. Psychologist 3: 360, 1948.Google Scholar
  24. 24.
    Bickford, R.G., Uihlein, A., and Petersen, M. C.: Electrical rhythms recorded from the depth of the frontal lobes during operations on psychotic patients, Proc. Staff Meetings Mayo Clinic 28: 135–143, 1953.Google Scholar
  25. 25.
    Henry, C.E., and Scoville, W.B.: Suppression-burst activity from isolated cerebral cortex in man, Electroencephalog. Clin. Neurophysiol. 4: 1–22, 1952.CrossRefGoogle Scholar
  26. 26.
    Naquet, R., Denavit, M., Lanoir, J., and Albe-Fessard, D.: Altérations transitoires ou définitives de zones diencéphaliques chez le chat. Leurs effects sur l’activité électrique corticale et le sommeil, International Symposium on the Anatomo=Functional Aspects of Sleep, C. N. R. S., 1964.Google Scholar
  27. 27.
    Morison, R. S., and Dempsey, E. W.: A study of thalamo-cortical relations, Am. J. Physiol. 135: 281–292, 1942.Google Scholar
  28. 28.
    Morison, R. S., and Bassett, D. L.: Electrical activity of the thalamus and basal ganglia in decorticate cats, J. Neurophysiol. 8: 309–314, 1945.Google Scholar
  29. 29.
    Knott, J. R., and Ingram, W. R.: EEG in cats with thalamic, hypothalamic, and mesencephalic lesions, Electroencephalog. Clin. Neurophysiol. 3: 373–374, 1951.CrossRefGoogle Scholar
  30. 30.
    Freeman, W., and Watts, J. W.: Retrograde degeneration of the thalamus following prefrontal lobotomy, J. Comp. Neurol. 86: 65–93, 1947.PubMedCrossRefGoogle Scholar
  31. 31.
    Itil, T., Keskiner, A., Kiremitci, N., and Holden, J. M.C.: Effect of phencyclidine in lobotomized and non-lobotomized schizophrenics, Can. Psychiat. Assoc. J. (in press).Google Scholar

Copyright information

© Plenum Press 1967

Authors and Affiliations

  • Turan M. Itil
  • J. M. C. Holden
  • Ali Keskiner
  • Max Fink

There are no affiliations available

Personalised recommendations