Advertisement

Concentration of Apple Juice

  • M. A. Rao

Abstract

Apple juice and other fluid foods are concentrated in order to reduce their volume and weight; this reduction results in lower costs of packaging, storage, and transportation. Concentration also has stimulated the development of many new food products and the economic utilization of perishable crops during peak harvest periods. In recent years, concentrated apple juice has become an important item of international commerce with large quantities of 72-°Brix juice being exported to the United States from West Germany, Argentina, South Africa, the Netherlands, France, and Chile. For example, the quantity of concentrated apple juice imported into the United States in 1983 amounted to the equivalent of 592.7 million liters of single-strength juice.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Acree, T. E., J. Barnard, and D. G. Cunningham. 1984. A procedure for the sensory analysis of gas chromatographic effluents. Food Chem. 14: 273–86.CrossRefGoogle Scholar
  2. Anon. 1976. Essence recovery keys quality in fruit pulp concentration. Food Eng. Int. (Sept.): 69–70.Google Scholar
  3. Anon. 1977. Engineering memo #18. Osmonics Inc., Minnetonka, MN.Google Scholar
  4. Anon. 1984. Reverse osmosis membranes cleared for bulk liquid food. Food Chem. News 26 (42): 41.Google Scholar
  5. Baxter, A. G., M. E. Bednas, T. Matsuura, and S. Sourirajan. 1980. Reverse osmosis concentration of flavor components in apple juice and grape juice waters. Chem. Eng. Commun. 4: 471–83.CrossRefGoogle Scholar
  6. Berry, R. E., and M. K. Veldhuis. 1977. Processing of oranges, grapefruit and tangerines. In Citrus science and technology, Vol. 2, ed. S. Nagy, P. E. Shaw, and M. K. Veldhuis, 177–252. AVI Publishing Co., Westport, CT.Google Scholar
  7. Blais, P. 1977. Polyamide membranes. In Reverse osmosis & synthetic membranes, ed. S. Sourirajan, 167–208. National Research Council of Canada, Ottawa.Google Scholar
  8. Bomben, J. L., S. Bruin, H. A. C. Thijssen, and R. L. Merson. 1973. Aroma recovery and retention in concentration and drying of foods. Adv. Food Res. 20: 1–112.CrossRefGoogle Scholar
  9. Chen, C. S. 1981. Evaporator technology for citrus. Paper presented at the 1981 Summer Meeting American Society of Agricultural Engineers, June 21–24, Orlando, FL.Google Scholar
  10. Chen, C. S. 1982. Citrus evaporator technology. Trans. Am. Soc. Agric. Eng. 25: 145–763.Google Scholar
  11. Chua, H. T. 1985. Reverse osmosis concentration of apple juice: Analysis of operating characteristics and membrane retention properties of cellulose acetate and polyamide membranes. M. S. Thesis, Cornell University, Ithaca, NY.Google Scholar
  12. Cunningham, D. G., T. E. Acree, J. Barnard, R. M. Butts, and P. A. Braell. 1986. Charm analysis of apple volatiles. Food Chem. 19: 137–47.CrossRefGoogle Scholar
  13. Dickson, J. M., T. Matsuura, P. Blais, and S. Sourirajan. 1975. Some transport characteristics of aromatic polyamide membranes in reverse osmosis. J. Appl. Polym. Sci. 19: 801.CrossRefGoogle Scholar
  14. Gasparino Filho, J., A. A. Vitali, F. C. P. Viegas, and M. A. Rao. 1984. Energy consumption in a concentrated orange juice plant. J. Food Process Eng. 7: 77–89.CrossRefGoogle Scholar
  15. Heid, J. L., and J. W. Casten. 1961. Vacuum concentration of fruit and vegetable juices. In Fruit and vegetable juice processing technology, ed. D. K. Tressler and M. A. Joslyn, 278–313. AVI Publishing Co., Westport, CT.Google Scholar
  16. Heiss, R. L., and L. Schachinger. 1951. Fundamentals of freeze-concentration of liquids. Food Technol. 5: 211–18.Google Scholar
  17. Hsieh, F. H., T. Matsuura, and S. Sourirajan. 1979. Reverse osmosis separation of polyethylene glycols in dilute aqueous solutions using porous cellulose acetate membranes. J. Appl. Polym. Sci. 23: 561.CrossRefGoogle Scholar
  18. Joslyn, M. A. 1961. Preservation by freezing. In Fruit and vegetable juice processing technology, ed. D. K. Tressler and M. A. Joslyn, 164–78. AVI Publishing Co., Westport, CT.Google Scholar
  19. Loeb, S. 1980. The Loeb-Sourirajan membrane: How it came about. In Synthetic membranes: Vol. 1, Desalination, ed. A. F. Turbak, 1–10. ACS Symp. Ser. 153. Amer. Chemical Society, Washington, DC.Google Scholar
  20. McAdams, W. E. 1954. Heat transmission. McGraw Hill, New York.Google Scholar
  21. McCabe, J. L., and J. M. Smith. 1976. Unit operations in chemical engineering. 3d ed. McGraw Hill, New York.Google Scholar
  22. Matsuura, T., A. G. Baxter, and S. Sourirajan. 1973. Concentration of fruit juices by reverse osmosis using porous cellulose acetate membranes. Acta Aliment. 2 (2): 109–50.Google Scholar
  23. Matsuura, T., A. G. Baxter, and S. Sourirajan. 1975. Reverse osmosis recovery of flavor components from apple juice waters. J. Food Sci. 40: 1039–46.CrossRefGoogle Scholar
  24. Merson, R. L., and A. I. Morgan. 1968. Juice concentration by reverse osmosis. Food Technol. 22: 631–34.Google Scholar
  25. Merson, R. L., G. Paredes, and D. B. Hosaka. 1980. Concentrating fruit juices by reverse osmosis. In Ultrafiltration membranes and applications, ed. A. R. Cooper, 405. Plenum Publishing Corp., New York.CrossRefGoogle Scholar
  26. Moore, J. G., and W. E. Hesler. 1963. Evaporation of heat sensitive materials. Chem. Eng. Prog. 59 (2): 87–92.Google Scholar
  27. Moresi, M. 1985. Design and optimisation of falling-film evaporators. In Development of food preservation, Vol. 3, 183–244. Elsevier Applied Science Publishers, New York.Google Scholar
  28. Moyer, J. C., and G. D. Saravacos. 1968. Scientific and technical aspects of fruit juice aroma recovery. Paper presented at the 7th International Fruit Juice Congress, September 5, Cannes, France.Google Scholar
  29. Paulson, D. J., R. L. Wilson, and D. D. Spatz. 1984. Crossflow membrane technology and its applications. Food Technol. 38 (12): 77–87.Google Scholar
  30. Rao, M. A., H. J. Cooley, and A. A. Vitali. 1984. Flow properties of concentrated juices at low temperatures. Food Technol. 38 (3): 113–19.Google Scholar
  31. Rebeck, H. 1976. Economics in evaporation. In Proceedings of 16th Annual Short Course, for the Food Industry,University of Florida, Gainesville, FL.Google Scholar
  32. Renshaw, T. A., S. F. Sapakie, and M. C. Hanson. 1982. Concentration economics in the food industry. Chem. Eng. Progr. 78 (5): 33–40.Google Scholar
  33. Roger, N. F., and V. A. Turkot. 1965. Designing distillation equipment for volatile fruit aromas. Food Technol. 19 (1): 69–72.Google Scholar
  34. Sapakie, S. F., and Renshaw, T. A. 1984. Economics of drying and concentration of food. In Engineering and food: Vol. 2, Processing applications, ed. Brian M. McKenna, 927–37. Elsevier Applied Science Publishers, London.Google Scholar
  35. Saravacos, G. D. 1970. Effect of temperature on viscosity of fruit juices and purees. J. Food Sci. 35: 122–25.CrossRefGoogle Scholar
  36. Saravacos, G. D., J. C. Moyer, and G. D. Wooster. 1969. Stripping of high-boiling aroma compounds from aqueous solutions. N.Y. State Agric. Exp. Stn. Res. Circ. 21.Google Scholar
  37. Saravacos, G. D., J. C. Moyer, and G. D. Wooster. 1970. Concentration of liquid foods in a pilot-scale falling film evaporator. N.Y. State Agric. Exp. Stn. Food Sci. Bull. 4.Google Scholar
  38. Schwartzberg, H. G. 1977. Energy requirements for liquid food concentration. Food Technol. 31 (3): 67–76.Google Scholar
  39. Sheu, M. J., and R. C. Wiley. 1983. Preconcentration of apple juice by reverse osmosis. J. Food Sci. 48: 422–29.CrossRefGoogle Scholar
  40. Sourirajan, S. 1977. Reverse osmosis—a general separation technique. In Reverse osmosis and synthetic membranes, ed. S. Sourirajan, 1–4. National Research Council of Canada, Ottawa.Google Scholar
  41. Sourirajan, S., and T. Matsuura. 1977a. Physicochemical criteria for reverse osmosis separations. In Reverse osmosis and synthetic membranes, ed. S. Sourirajan, 5–43. National Research Council of Canada, Ottawa.Google Scholar
  42. Sourirajan, S., and T. Matsuura. 1977b. Transport through reverse osmosis membranes. In Reverse osmosis and synthetic membranes, ed. S. Sourirajan, 45–66. National Research Council of Canada, Ottawa.Google Scholar
  43. Sourirajan, S., and T. Matsuura. 1985. Reverse osmosis/ultrafiltration process principles. National Research Council of Canada, Ottawa.Google Scholar
  44. Standiford, F. D. 1963. Evaporation. In Encyclopedia of chemical technology, 2d ed., Vol. 8, p. 559. Interscience, New York.Google Scholar
  45. Thijssen, H. A. C. 1969. Freeze concentration of food liquids. Food Manu f. 44 (7): 4954.Google Scholar
  46. Thijssen, H. A. C. 1970. Concentration processes for liquid foods containing volatile flavors and aromas. J. Food TechnoL 5: 211–29.CrossRefGoogle Scholar
  47. Thijssen, H. A. C. 1974. Freeze concentration. In Advances in preconcentration and dehydration of foods, ed. A. Spicer, 115–49. John Wiley and Sons, New York.Google Scholar
  48. Thijssen, H. A. C., and L. R. W. A. Middleberg. 1966. Fundamentals in fruit juice concentration. International Institute of Refrigeration, Delft, The Netherlands.Google Scholar
  49. Thijssen, H. A. C., and N. S. M. Van Oyen. 1977. Analysis and economic evaluation of concentration alternatives for liquid foods: Quality aspects and costs of concentration. J. Food Process Eng. 1: 215–40.CrossRefGoogle Scholar
  50. Walker, L. H. 1961. Volatile flavor recovery. In Fruit and vegetable juice processing technology, ed. D. K. Tressler and M. A. Joslyn, 358–70. AVI Publishing Co., Westport, CT.Google Scholar

Copyright information

© Van Nostrand Reinhold 1989

Authors and Affiliations

  • M. A. Rao

There are no affiliations available

Personalised recommendations