Microbiology and Preservation

  • Katherine M. J. Swanson


The microbiology of processed apple products is generally restricted to organisms (yeasts, molds, and aciduric bacteria) capable of growth at the low pH of apple products. Early researchers in the 1950s and 1960s characterized and identified these organisms. The microbiological concerns in processed apple products include identification of the types of organisms encountered, measurement of microbiological quality, and preservation of products. Many of the significant microbiological problems in apple processing are also important in other fruit juices. While this chapter focuses on the microbiology of apple products, general references concerning other fruit products are given and information that is applicable to apple products (Splittstoesser 1978; Berry 1979; Baird-Parker and Kooiman 1980).


Lactic Acid Bacterium Fruit Juice Apple Juice Sodium Benzoate Sorbic Acid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmad, S., and A. L. Branen. 1981. Inhibition of mold growth by butylated hydroxyanisole. J. Food Sci. 46: 1059–63.CrossRefGoogle Scholar
  2. Baerwald, G. 1976. Cold sterilization of apple juice with the fungicide pimaricin (in German) Ind. Obst Gemueseverwert. 61: 453–58.Google Scholar
  3. Baird-Parker, A. C., and W. J. Kooiman. 1980. Soft drinks, fruit juices, concentrates, and fruit preserves. In Microbial ecology of foods, ed. J. Silliker, 643–68. Academic Press, New York.Google Scholar
  4. Barkai-Golan, R., and Y. Aharoni. 1976. The sensitivity of food spoilage yeasts to acetaldehyde vapors. J. Food Sci. 41: 717–18.CrossRefGoogle Scholar
  5. Beech, F. W. 1958. The yeast flora of apple juice and ciders. J. Appl. Bacteriol. 21: 25766.Google Scholar
  6. Beech, F. W., and J. G. Carr. 1977. Cider and perry. In Economic microbiology: Vol. 1, Alcoholic beverages, ed. A. H. Rose, 139–313. Chapter 3. Academic Press, New York. Berry, J. M. 1979. Yeast problems in the food and beverage industry. In Food mycology, ed. M. Rhodes, 82–90. G. K. Hall and Co., Boston.Google Scholar
  7. Beuchat, L. R. 1981. Synergistic effects of potassium sorbate and sodium benzoate on thermal inactivation of yeasts. J. Food Sci. 46: 771–77.CrossRefGoogle Scholar
  8. Beuchat, L. R. 1983. Combined effects of food preservatives and organic acids on thermal inactivation of yeasts in fruit juices. Lebensm. Wiss. Technol. 16 (1): 51–54.Google Scholar
  9. Beuchat, L. R. 1984. Injury and repair of yeasts and moulds. In The revival of injured microbes, ed. M. H. E. Andrew and A. D. Russell, 293–308. Academic Press, London.Google Scholar
  10. Beuchat, L. R., and B. V. Nail. 1985. Evaluation of media for enumerating yeasts and molds in fresh and frozen fruit purees. J. Food Protect. 48: 312–15.Google Scholar
  11. Beuchat, L. R., and S. L. Rice. 1979. Byssochlamys spp. and their importance in processed fruits. Adv. Food Res. 25: 237–88.Google Scholar
  12. Bowen, J. F., and F. W. Beech. 1967. Yeast flora of cider factories. J. AppL Bacteriol. 30: 475–83.CrossRefGoogle Scholar
  13. Brackett, R. E., and E. H. Marth. 1979a. Ascorbic acid and ascorbate cause disappearance of patulin from buffer solutions and apple juice. J. Food Protect. 42: 864–66.Google Scholar
  14. Brackett, R. E., and E. H. Marth. 1979b. Patulin in apple juice from roadside stands in Wisconsin. J. Food Protect. 42: 862–63.Google Scholar
  15. Busta, F. F., E. H. Peterson, D. M. Adams, and M. G. Johnson. 1984. Colony count methods. In Compendium of methods for the microbiological examination of foods, 2nd ed., ed. M. L. Speck. American Public Health Association, Washington, DC.Google Scholar
  16. Carr, J. G. 1958. Lactic acid bacteria as spoilage organisms of fruit juice products. J. AppL Bacteriol. 21: 267–71.CrossRefGoogle Scholar
  17. Carr, J. G. 1959. Some special characteristics of the cider lactobacilli. J. Appl. Bacteriol. 22: 377–83.Google Scholar
  18. Carr, J. G. 1974. Genus Zymomonas. In Bergey’s manual of determinative bacteriology, 8th ed., ed. R. E. Buchanan and N. E. Gibbons. Williams and Wilkins Co., Baltimore.Google Scholar
  19. Carr, J. G., and G. C. Whiting. 1971. Microbiological aspects of production and spoilage of cider. J. AppL Bacteriol. 34: 81–93.CrossRefGoogle Scholar
  20. CDC. 1975. Salmonella typhimurium outbreak traced to a commercial apple cider-New Jersey. Morbidity Mortality Weekly Report 24: 87–88.Google Scholar
  21. Cerny, G. 1980. Dependence of thermal inactivation of microorganisms on the pH-value of media. I. Yeasts and moulds. Z. Lebensm. Unters. Forsch. 170: 173–79.CrossRefGoogle Scholar
  22. Corry, J. E. L. 1976. The effect of sugars and polyols on heat resistance and morphology of osmophilic yeasts. J. AppL Bacteriol. 40: 269–76.CrossRefGoogle Scholar
  23. Cousin, M. A., E. H. Marth, and O. Fennema. 1977. Inactivation of Saccharomyces bailii and Debaromyces hansenii by dichlorofluoromethane. Lebensm. Wiss. Technol. 10 (4): 227–31.Google Scholar
  24. Czerwiecki, L. 1980. Detection and semiquantitative determination of patulin in apple juice (in Polish). Roczn. Pzh. 31 (3): 271–75.Google Scholar
  25. Davenport, R. R. 1980. Microbiology in prospective. Progress in the field of fruit and vegetable juices. Proc. Int. Fed. Fruit Juice Prod. 16: 155–73.Google Scholar
  26. Davenport, R. R. 1982. Microbial spoilage-yeasts. In Long Ashton Research Station Report 1982, 170–71. Univ. of Bristol, England.Google Scholar
  27. Doores, S. 1983. The microbiology of apples and apple products. Grit. Rev. Food Sci. Nutr. 19 (2): 133–49.CrossRefGoogle Scholar
  28. Doyle, M. P., R. S. Applebaum, R. E. Brackett, and E. H. Marth. 1982. Physical, chemical and biological degradation of mycotoxins in foods and agricultural commodities. J. Food Protect. 45: 964–71.Google Scholar
  29. Fellers, C. R. 1929. Sodium benzoate and benzoic acid preservatives for cider and other fruit juices. Fruit Prod. J. Am. Vinegar Ind. 9: 113–15.Google Scholar
  30. Ferguson, W. E., and W. D. Powrie. 1957. Studies on the preservation of fresh apple juice with sorbic acid. Appl. Microbiol. 5: 41–43.Google Scholar
  31. Fournier, H., R. Charbonneau, M. Gagnon, and G. DuBois. 1981. Deacidifying effect of Schizosaccharomyces pombe on Quebec cider (in French). Sci. Alimen. 1: 19–25.Google Scholar
  32. Frank, H. K., and U. Hertkorn-Obst. 1980. Evolution of oxygen from hydrogen peroxide by microorganisms as rapid detection method of high microbial counts (in German) Chem. Mikrobiol. TechnoL Lebensm. 6: 143–49.Google Scholar
  33. Fritz, W., and R. Engst. 1981. Survey of selected mycotoxins in food. J. Environ. Sci. Health Part B 16 (2): 193–210.CrossRefGoogle Scholar
  34. Gibson, B. 1973. The effect of high sugar concentrations on the heat resistance of vegetative microorganisms. J. Appl. Bacteriol. 36: 365–76.CrossRefGoogle Scholar
  35. Goverd, K. A., F. W. Beech, R. P. Hobbs, and R. Shannon. 1979. The occurrence and survival of coliforms and salmonellas in apple juice and cider. J. Appl. Bacteriol. 46: 521–30.CrossRefGoogle Scholar
  36. Grampp, E. 1978. Studies on hot clarification (in German). Flüss. Obst 45: 336–41. Graumlich, T. R. 1985. Estimation of microbial populations in orange juice by bioluminescence. J. Food Sci. 50: 116–24.Google Scholar
  37. Harrington, W. O., and C. H. Hills. 1968. Reduction of the microbial population of apple cider by ultraviolet irradiation. Food Technol. 22: 1451–54.Google Scholar
  38. Hatcher, W. S., S. Di Benedetto, L. E. Taylor, and D. I. Murdock. 1977. Radiometric analysis of frozen concentrated orange juice for total viable microorganisms. J. Food Sci. 42: 636–39.CrossRefGoogle Scholar
  39. Hatcher, W. S., E. C. Hill, D. F. Splittstoesser, and J. L. Weihe. 1984. Fruit beverages. In Compendium of methods for the microbiological examination of foods, 2nd ed., ed. M. L. Speck, 644–50.Google Scholar
  40. American Public Health Association, Washington, DC. Heatherbell, D. A., J. L. Short, and P. Struebi. 1977. Apple juice clarification by ultrafiltration. Confructa 22: 157–69.Google Scholar
  41. Hoick, A. A., and M. L. Fields. 1965. The effects of storage conditions upon acetyl-methylcarbinol, diacetyl, and ethyl alcohol in apple juice. J. Food Sci. 30: 604–9.CrossRefGoogle Scholar
  42. Kiss, I., and D. I. Clarke. 1969. Study of yeast destruction by radiation, heat and a combination of the two (in Hungarian). Elelmiszertudomany 3: 115–26.Google Scholar
  43. Kiss, I., and J. Farkas. 1968. Radiation sterilization of freeze-concentrated apple juice (in Hungarian). Elelmiszertudomany 2: 67–75.Google Scholar
  44. Koburger, J. A., and E. H. Marth. 1984. Yeasts and molds. In Compendium of methods for the microbiological examination of foods, 2nd ed., ed. M. L. Speck, 197–202. American Public Health Association, Washington, DC.Google Scholar
  45. Koch, J., J. A. Schildmann, D. Seebeck, and R. Weisrock. 1978. Continuous fermentation of apple juice under sterile conditions. Lebensm. Wiss. Technol. 11(2): 88–93. Konowalchuk, J., and J. I. Speirs. 1978. Antiviral effect of apple beverages. Apji’l Environ. Microbiol. 36: 798–801.Google Scholar
  46. Kosikowski, F. V., and V. Moreno. 1970. Removing microorganisms in fresh apple juice by bacterial centrifugation. J. Food Sci. 35: 368–70.CrossRefGoogle Scholar
  47. Lennox, J. E., and L. J. McElroy. 1984. Inhibition of growth and patulin synthesis in Penicillium expansum by potassium sorbate and sodium propionate in culture. Appel. Environ. Microbiol. 48: 1031–33.Google Scholar
  48. Lindroth, S. 1980. Occurrence, formation and detoxification of patulin mycotoxin.Google Scholar
  49. Materials Processing Technol. Publ. 24. Technical Research Center, Espoo, Finland. Lindroth, S., and A. Niskanen. 1978. Comparison of potential patulin hazard in home-made and commercial apple products. J. Food Sci. 43: 446–48.Google Scholar
  50. Lovett, J., R. G. Thompson, and B. K. Boutin. 1975. Patulin production in apples stored in a controlled atmosphere. J. Assoc. Offic. Anal. Chem. 58: 909–11.Google Scholar
  51. Mack, S. D., J. J. Albrecht, J. A. Litchfield, and M. E. Parker. 1959. Studies in the cold sterilization of liquid foods using mercury resonance radiation. II. Apple juice. Food Res. 24: 383–91.Google Scholar
  52. Marshall, C. R., and V. T. Walkley. 1951a. Some aspects of microbiology applied to 362 Processed Apple ProductsGoogle Scholar
  53. commercial apple juice production. I. Distribution of microorganisms on the fruit. Food Res. 16: 448–56.Google Scholar
  54. Marshall, C. R., and V. T. Walkley. 1951b. Some aspects of microbiology applied to commercial apple juice production. II. Microbiological control of processing. Food Res. 16: 515–21.Google Scholar
  55. Marshall, C. R., and V. T. Walkley. 1952. Some aspects of microbiology applied to commercial apple juice production. Part III. Isolation and identification of apple juice spoilage organisms. Food Res. 17: 123–31.Google Scholar
  56. Murdock, D. I., and W. D. Hatcher, Jr. 1978. A simple method to screen fruit juices and concentrates for heat-resistant mold. J. Food Protect. 41: 254–56.Google Scholar
  57. Norris, J. G. 1982. Sanitation in the processing and packaging of raw cider. Dairy Food Sanit. 2: 143–44.Google Scholar
  58. Ough, C. S., and J. L. Ingraham. 1960. Use of sorbic acid and sulfur dioxide in sweet table wines. Am. J. Enol. Vitic. 11: 117–22.Google Scholar
  59. Park, Y. J., and C. B. Sohn. 1980. Decomposition of acid in wine by yeast. Res. Rep. Agric. Sci. Technol. 7(2): 176–81. Chungnam Nat. Univ., Daejeon, S. Korea.Google Scholar
  60. Passmore, S. M., and J. G. Carr. 1975. The ecology of the acetic acid bacteria with particular reference to cider manufacture. J. Appl. Bacteriol. 38: 151–58.CrossRefGoogle Scholar
  61. Put, H. M. C., and J. De Jong. 1982. Heat resistance studies of yeasts; vegetative cells versus ascospores: Erythromycin inhibition of sporulation in Kluyveromyces and Saccharomyces species. J. Appl. Bacteriol. 53: 73–79.CrossRefGoogle Scholar
  62. Reinhard, L., and F. Radler. 1981. The action of sorbic acid on Saccharomyces cerevisiae.Google Scholar
  63. I. Effect on growth and the aerobic and anaerobic metabolism of glucose. Z. Lebensm. Unters. Forsch. 172: 178–283.Google Scholar
  64. Roland, J. O., and L. R. Beuchat. 1984. Biomass and patulin production by Byssochlamys nivea in apple juice as affected by sorbate, benzoate, SO2 and temperature. J. Food Sci. 49: 402–6.CrossRefGoogle Scholar
  65. Sand, F. E. M. J. 1973. Recent investigations on the microbiology of fruit juice concentrates. Proc. Int. Fed. Fruit Juice Prod. 13: 185–216.Google Scholar
  66. Sands, D. C., J. L. McIntyre, and G. S. Walton. 1976. Use of activated charcoal for the removal of patulin from cider. Appl. Environ. Microbiol. 32: 388–91.Google Scholar
  67. Scott, P. M. 1974. Collaborative study of a chromatographic method for determination of patulin in apple juice. J. Assoc. Off. Anal. Chem. 57: 621–25.Google Scholar
  68. Semling, H. V., Jr. 1984. Government and industry interest in food irradiation on sharp rise but consumers remain skeptical, fearful of perceived health/safety repercussions. Food Process. 45 (11): 8–10.Google Scholar
  69. Simon, R. A., L. Green, and D. D. Stevenson. 1982. The incidence of ingested metabi sulfite sensitivity in an asthmatic population. J. Allergy Clin. Immunol. 69: 118.CrossRefGoogle Scholar
  70. Solunkhe, D. K. 1955. Sorbic acid as a preservative for apple juice. Food Technol. 9: 590.Google Scholar
  71. Splittstoesser, D. F. 1978. Fruits and fruit products. In Food and beverage mycology, ed. L. R. Beuchat, 83–109. AVI Publishing Co., Westport, CT.Google Scholar
  72. Splittstoesser, D. F., and J. O. Mundt. 1984. Fruits and vegetables. In Compendium of methods for the microbiological examination of foods, 2nd ed., ed. M. L. Speck, 63643. American Public Health Association, Washington, DC.Google Scholar
  73. Splittstoesser, D. F., and C. M. Splittstoesser. 1977. Ascospores of Byssochlamys fulva compared with those of a heat resistant Aspergillus. J. Food Sci. 42: 685–88.CrossRefGoogle Scholar
  74. Splittstoesser, D. F., A. Einset, M. Wilkison, and J. Preziose. 1974. Effect of food ingredients on the heat resistance of Byssochlamys fulva ascospores. In Proc. IV Int.Congr. Food Sci. Technol., Vol. 3, 79–85.Google Scholar
  75. Splittstoesser, D. F., F. R. Kuss, W. Harrison, and D. B. Prest. 1971. Incidence of heatresistant molds in eastern orchards and vineyards. Appl. Microbiol. 21: 335–37.Google Scholar
  76. Splittstoesser, D. F., L. L. Lienk, M. Wilkison, and J. R. Stamer. 1975. Influence of wine composition on the heat resistance of potential spoilage organisms Appl.Microbiol. 30: 369–73.Google Scholar
  77. Steele, B. T., N. Murphy, G. S. Arbus, and C. P. Rance. 1982. An outbreak of hemolytic uremic syndrome associated with ingestion of fresh apple juice. J. Pediatr. 101: 963–65.CrossRefGoogle Scholar
  78. Stinson, E. E., S. F. Osman, C. N. Huhtanen, and D. D. Bills. 1978. Disappearance of patulin during alcoholic fermentation of apple juice. Appt Environ. Microbiol. 36: 620–22.Google Scholar
  79. Swanson, K. M. J., S. B. Leasor, and D. L. Downing. 1985. Aciduric and heat resistant microorganisms in apple juice and cider processing operations. J. Food Sci. 50: 336–39.CrossRefGoogle Scholar
  80. Thurm, V., P. Paul, and C. E. Koch. 1979. The hygienic significance of patulin in foods: 2. The occurrence of patulin in fruit and vegetables. Nahrung 23: 131–34.CrossRefGoogle Scholar
  81. Van der Spuy, J. E., F. N. Matthee, and D. J. A. Crafford. 1975. The heat resistance of molds Penicillium vermiculatum Dangeard and Penicillium brefeldianum Dodge in apple juice. Phytophylactica 7: 105–8.Google Scholar
  82. Warth, A. D. 1985. Resistance of yeast species to benzoic and sorbic acids and to sulfur dioxide. J. Food Protect. 48: 564–69.Google Scholar
  83. Weaver, E. A., J. F. Robinson, and C. H. Hills. 1957. Preservation of apple cider with sodium sorbate. Food Technol. 11: 667–69.Google Scholar
  84. Zindulis, J. 1984. A medium for the impedimetric detection of yeasts in foods. Food Microbiol. 1: 159–67.CrossRefGoogle Scholar

Copyright information

© Van Nostrand Reinhold 1989

Authors and Affiliations

  • Katherine M. J. Swanson

There are no affiliations available

Personalised recommendations