• Sam O. Ale
  • Diego Bricio Hernandez
  • Lilia Del Riego
  • J. F. Ling
  • Ivo W. Molenaar
  • Samuel Goldberg
  • Aristides Camaragos Barreto
  • Hugh Burkhardt
  • R. John Gaffney
  • F. van der Blij
  • Douglas A. Quadling
  • P. C. Rosenbloom
  • N. Connie Knox
  • David Matthews
  • Rudolf Straesser
  • Robert L. Lindsay
  • Peter Price
  • Werner Blum
  • Mogens Niss
  • Helmut Siemon
  • Max S. Bell
  • Maynard Thompson
  • D. Bushaw
  • Candido Sitia
  • Centro U. Morin


In recent years there has been a considerable development of emphasis on the interplay between mathematics and biology, espeically at the tertiaral levels of education. These can be seen in the established areas of Biostatistics, Catastrophe theory, Population Biology, Mathematical Genetics and Cybernetics. Prominant journals produce research works of high standard on these interplays. These recent developments have forced some curriculum developers to contemplate the introduction of the subject of “Biomathematics” into the school curriculum. Such a move, however, may be open for a debate.


School Mathematics Mathematics Curriculum School Leaver Biology Student Teaching Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ale, S.O. Students perceptions on mathematics-biology relationships. Ahmadu Bello University Research Project, 1979/80.Google Scholar
  2. 2.
    Ale, S.O. Mathematics or biology - A survey of student options. Ahmadu Bello University Research Project, 1979/80.Google Scholar
  3. 3.
    Dudley, B.A.C. Bringing mathematics to life. Int. J. Math Educ. Sci. Technol, 6 (1) 1975.Google Scholar
  4. 4.
    Dudley, B.A.C. The mathematics of school biology exam papers. Jour, of Bio. Educ, 11 1 1977.CrossRefGoogle Scholar
  5. 5.
    Dudley, B.A.C. Investigating the effect of size upon metabolic rate of mammals. Jour. of Bio. Educ, 7 (3) 1973.Google Scholar
  6. 6.
    Dudley, B.A.C. Some mathematical relationship of bilogical value. Jour. of Bio. Educ, 5 1971.Google Scholar
  7. 7.
    Dudley, B.A.C. The maths of whether an animals legs will hold it up. The Teacher Jan. 1972.Google Scholar
  8. 8.
    Dudley, B.A.C. The mathematics) bases of phenotype ratios. Int. J. Math. Educ. Sci. Technol, 4, 1973.Google Scholar
  9. 9.
    Flegg, H.G. To be published.Google Scholar
  10. 10.
    Gibbons, F. & Blofield, B. A Mathematical Approach to Biology.Google Scholar
  11. 11.
    Hutchinson, C.S. Biological classification. The Jour. of the Ass. for Sci. Educ 61 (215) 1979.Google Scholar
  12. 12.
    Report, Mathematics for Biologists. Jour. of Bio. Educ 8 (5) 1974.Google Scholar
  13. 13.
    Stone, R. & Oozens, A. New Biology for Tropical Schools, Longman, 1972.Google Scholar
  14. 14.
    Thom, Rane Structural Stability and Morphogenesis, Benjamin, Inc. 1975.Google Scholar
  15. Banks, H. T., “Modelling and control in the biomedical sciences”, Springer-Verlag, Berlin, 1975.CrossRefGoogle Scholar
  16. Bhatia, N. P. & Szego, G., “Dynamical Systems: Stability theory and applications”, Springer Lecture Notes in Mathematics, No. 35, Berlin, 1967.Google Scholar
  17. Brookhaven National Laboratory, “Homeostatic Mechanisms”, Brookhaven Symposia in Biology, No. 10, Upton, N.Y., 1957.Google Scholar
  18. Ganong, W. R., “Review of Medical Physiology”, Lange Medical Publications, Los Altos, Calif., 1973.Google Scholar
  19. Hernandez, D. B., “Sobre la validacion de Modelos de Homeostasis”, Rep. Inv. UAMI-CBI-20, Universidad Autonoma Metropolitana-Iztapalapa, Mexico, 1979.Google Scholar
  20. Riesz, F. & Nagy, B. S., “Functional Analysis”, Frederick Ungar Publishing Co., New York, 1965.Google Scholar
  21. Talbot, S. A. & Gessner, V., “Systems Physiology”, John Wiley & Sons Inc., New York, 1973.Google Scholar
  22. Wiener, N, N., “Cybernetics”, The MIT Press, Cambridge, Mass, 1961.Google Scholar
  23. Zeigler, B. P., “Theory of modelling and simulation”, John Wiley & Sons Inc., New York, 1975.Google Scholar
  24. 1.
    The Mathematics Curriculum: Series published for the Schools Council by Blackie. The volume referred to is entitled Mathematics Across the Curriculum.Google Scholar
  25. Aiker, H.R. Jr., K. Deutsch, and A.H. Stoetzel, eds. Mathematical Approaches to Politics. San Francisco: Jossey Bass, 1973.Google Scholar
  26. Allen, R.G.D. Mathematical Economics. 2nd ed., London: Macmillan, 1966.Google Scholar
  27. Arrow, K.J. “Mathematical Models in the Social Sciences.” pp. 139–154 in Lerner, D. and H.D. Lasswell, eds., The Policy Sciences. Stanford: Stanford University Press, 1952.Google Scholar
  28. Ballonoff, P.A. Mathematical Foundations of Social Anthropology. Paris: Mouton, 1976.MATHCrossRefGoogle Scholar
  29. Beauchamp, M.A. Elements of Mathematical Sociology. New York: Random House, 1970.Google Scholar
  30. Benavie, A. Mathematical Techniques for Economic Analysis. Englewood Cliffs: Prentice Hall, 1972.MATHGoogle Scholar
  31. Berlinski, D. On Systems Analysis: An Essay Concerning the Limitations of Some Mathematical Methods in the Social, Political, and Biological Sciences. Cambridge: MIT Press, 1976.Google Scholar
  32. Brainerd, B. Introduction to the Mathematics of Language Study. New York: American Elsevier, 1971.MATHGoogle Scholar
  33. Brams, S.J. Game Theory and Politics. New York: Free Press (Macmillan ), 1975.Google Scholar
  34. Brown, R.V., A.S. Kahr, and C. Peterson. Decision Analysis for the Manager. New York: Holt, Rinehart and Winston, 1974.Google Scholar
  35. Cohen, H. “Mathematical Applications, Computation, and Complexity,” Quarterly of Applied Mathematics, Vol. XXX (1972), pp. 109–121.Google Scholar
  36. Coleman, J.S. Introduction to Mathematical Sociology. New York: Free Press, 1964.Google Scholar
  37. Committee on the Undergraduate Program in Mathematics. Tentative Recommendations for the Undergraduate Mathematics Program of Students in the Biological, Management and Social Sciences.Berkeley, 1964.Google Scholar
  38. Committee on the Undergraduate Program in Mathematics. Applied Mathematics in the Undergraduate Curriculum. Berkeley, 1972.Google Scholar
  39. Coombs, C.H., R.M. Dawes, and A. Tversky. Mathematical Psychology, An Elementary Introduction. Englewood Cliffs: Prentice-Hall, 1970.MATHGoogle Scholar
  40. Coser, L. Presidential Address. American Sociological Review, Vol. 40, (1975), pp. 691–700.CrossRefGoogle Scholar
  41. Davis, H.T. “Mathematical Adventures in Social Science.” American Mathematical Monthly, Vol. 45 (1938), pp. 93–104.MathSciNetCrossRefGoogle Scholar
  42. Fagen, R.R. “Some Contributions of Mathematical Reasoning to the Study of Politics.” American Political Science Review, Vol. 55 (1961), pp. 888–900.CrossRefGoogle Scholar
  43. Fararo, T.J. Mathematical Sociology. New York: Wiley, 1973.Google Scholar
  44. Fisher, I. “The Applications of Mathematics to the Social Sciences,” Bulletin of the A.M.S, Vol. 36 (1930), pp. 225–243.MATHCrossRefGoogle Scholar
  45. Franklin, J. Methods of Mathematical Economics (Linear and Nonlinear Programming, Fixed-Point Theories). New York: Springer-Verlag, 1980.Google Scholar
  46. Gandolfo, G. Mathematical Methods and Models in Economic Dynamics. Amsterdam: North-Holland, 1971.MATHGoogle Scholar
  47. Goldberg, S., ed. Some Illustrative Examples of Undergraduate Mathematics in the Social Sciences. Howard, California: Mathematical Association of American, Special Projects Office, 1977.Google Scholar
  48. Hilton, P. The Role of Applications in the Undergraduate Mathematics Curriculum. Report of the Ad Hoc Committee on Applied Mathematics Training, National Research Council. Washington, D.C.: National Academy of Sciences, 1979.Google Scholar
  49. Hodson, F.R., D.G. Kendall, and P. Tautu, eds. Mathematics in the Archaeological and Historical Sciences. Edinburgh: Edinburgh University Press, 1971.MATHGoogle Scholar
  50. Holloway, C.A. Decision Making Under Uncertainty: Model and Choices. Englewood Cliffs: Prentice-Hall, 1979.Google Scholar
  51. Hone, Joseph. W.B. Yeats 1865–1939. 2nd ed., London: Macmillan, 1962.Google Scholar
  52. Kay, P. Explorations in Mathematical Anthropology. Cambridge: MIT Press 1971.Google Scholar
  53. Keeney, R.L. and H. Raiffa. Decisions & Multiple Objectives: Preferences and Value Tradeoffs. New York: Wiley, 1976.Google Scholar
  54. Kemeny, J.G. and J.L. Snell. Mathematical Models in the Social Sciences. Boston: Ginn, 1962.MATHGoogle Scholar
  55. Keyfitz, N. Introduction to the Mathematics of Population. Reading: Addison-Wesley, 1968.Google Scholar
  56. Kim, K.H. and F.W. Roush. Mathematics for Social Scientists. New York: Elsevier North Holland, 1980.MATHGoogle Scholar
  57. King, C.A.M. “Mathematics in Geography.” International Journal of Mathematics Education, Science, and Technology, Vol. 1 (1970), pp. 185–205.CrossRefGoogle Scholar
  58. Krantz, D.H., R.D. Luce, R.C. Atkinson, P. Suppes, eds. Contemporary Developments in Mathematical Psychology, Vol. I, Learning, Memory, and Thinking, Vol. 2, Measurement, Psychophysics, and Neural Information Processing. San Francisco: Freeman, 1974.Google Scholar
  59. Krischer, J.P. An Annotated Bibliography of Decision Analytic Applications to Health Care,“ Operations Research, Vol. 28 (Jan. - Feb. 1980 ), pp. 97–113.MATHCrossRefGoogle Scholar
  60. Kruskal, W., ed. Mathematical Sciences and Social Sciences. Englewood Cliffs: Prentice-Hall, 1970.Google Scholar
  61. Lave, C.A. and J.G. March. An Introduction to Models in the Social Sciences. New York: Harper & Rown, 1975.Google Scholar
  62. Lazarsfeld, P. “Concluding Remarks.” pp. 97–103, in Mathematical Models of Human Behavior, Proceedings of a Symposium. Standf or, Conn.: Dunlap and Associates, 1955.Google Scholar
  63. Lasarsfeld, P.F. and N.W. Henry, eds. Readings in Mathematical Social Science. Cambridge: MIT Press, 1966.Google Scholar
  64. Leik, R.K. and B.F. Meeker. Mathematical Sociology. Englewood Cliffs: Prentice-Hall, 1975.MATHGoogle Scholar
  65. Luce, R.D. “The Mathematics Used in Mathematical Psychology.” American Mathematical Monthly, Vol. 71 (1964), pp. 364–378.MathSciNetMATHCrossRefGoogle Scholar
  66. Maki, D.P. and M. Thompson. Mathematical Models and Applications. Englewood Cliffs: Prenticee-Hall, 1973.Google Scholar
  67. Mapes, R. Mathematics and Sociology. London: Batsford, 1971.Google Scholar
  68. Miller, G.A. “Applications of Mathematics in Social Psychological Research.” SSRC Items, Vol. II (1957), pp. 41–44.Google Scholar
  69. Mosteller, F.. “The Role of the Social Science Research Council in the Advance of Mathematics in the Social Sciences.” SSRC Items, Vol. 28 (1974), pp. 17–24.Google Scholar
  70. Olinick, M. An Introduction to Mathematical Models in the Social and Life Sciences. Reading: Addison-Wesley, 1978.MATHGoogle Scholar
  71. Partee, B.H. Mathematical Fundamentals in Linguistics. Stanford, Conn.: Greylock, 1976.Google Scholar
  72. Pauker, S.P. and S.G. Pauker. “Prenatal Diagnosis: A Directive Approach to Genetic Counseling Using Decision Analysis,” The Yale Journal of Biology and Medicine, Vol. 50 (1977), pp. 275–289.Google Scholar
  73. Pollard, J.H. Mathematical Models for the Growth of Human Populations. Cambridge: Cambridge University Press, 1973.MATHGoogle Scholar
  74. Raiffa, H. Decision Analysis, Introductory Lectures on Choices and Uncertainty. Reading, Mass.: Addison-Wesley, 1968.Google Scholar
  75. Rapoport, A.. “Directions in Mathematical Psychology I.” and “Directions in Mathematical Psychology, Il.” American Mathematical Monthly. Vol. 83 (1976), pp. 85–106 and pp. 153–172.MathSciNetMATHCrossRefGoogle Scholar
  76. Riker, W.H. and P.C. Ordeshook. An Introduction to Positive Political Theory. Englewood Cliffs: Prentice-Hall, 1973.Google Scholar
  77. Roberts, F.S. Discrete Mathematical Models with Applications to Social, Biological, and Environmental Problems. Englewood Cliffs: Prentice-Hall, 1976.MATHGoogle Scholar
  78. Roistacher, R.C. “A Review of Mathematical Models in Sociometry.” Sociological Methods & Research, Vol. 3 (1974), pp. 123–171.CrossRefGoogle Scholar
  79. Samuelson, P.A. “Economic Theory and Mathematics - An Appraisal.” Papers and Proceedings, American Economic Review, Vol. 42 (1952), pp. 56–66.Google Scholar
  80. Selby, H.A. Notes of Lectures on Mathematics in the Behavioral Sciences. Washington, D.C.: Mathematical Association of American, 1973.Google Scholar
  81. Sibley, E. The Education of Sociologists in the United States. New York: Russell Sage Foundation, 1963, especially pp. 134–145.Google Scholar
  82. Spanier, J. “The Mathematics Clinic: An Innovative Approach to Realism Within an Academic Environment,” American Mathematical Monthly, Vol. 83 (1976), pp. 771–775.MathSciNetCrossRefGoogle Scholar
  83. Spanier, J. “Education in Applied Mathematics, The Claremont Mathematics Clinic,” SIAM Review, Vol. 19 (1977), pp. 536–549.CrossRefGoogle Scholar
  84. Swierenga, R.P., ed. Quantification in American History, New York: Atheneum, 1970.Google Scholar
  85. Taylor, M. “Review Article: Mathematical Political Theory.” British Journal of Politcal Science. Vol. 1 (1971), pp. 339–382.CrossRefGoogle Scholar
  86. Weinstein, W.D., J.S. Pliskin, and W.B. Stason. “Coronary Artery Bypass Surgery: Decision and Policy Analysis,” pp. 342–3371 in Bunker, J.P., B.A. Barnes and F. Mosteller, eds. Costs, Risks, and Benefits of Surgery New York: Oxford University Press, 1977.Google Scholar
  87. White, D.R. “Mathematical Anthropology,” in J.J. Honigmann, ed. Handbook of Social and Cultural Anthropology. Chicago: Rand-McNally, 1972.Google Scholar
  88. Ausubel, D.P., Educational Psychology: A Cognitive View, Holt, 1968.Google Scholar
  89. Barreto, A.C., Interdisciplinary models of teaching geometry, III International Congress on Mathematical Education, Programme Part Ill, Abstracts of the Short Communications, Section A4, Karlsruhe, 1976.Google Scholar
  90. Baretto, A.C., Ensino a partir de modelos (in Portuguese), Boletin Informativo, ICMI-CIAEM, no. 5, Septiembre 1977, IMECC-UNICAMP, Campinas, 8–15.Google Scholar
  91. Baretto, A.C., Propuesta de estrategia: la ensenanza partiendo de modelas, Actas del V Congreso de la Agrupacion de Mathematicos de Expresion Latina (Palma de Mallorca, 19–23 septiembre 1977), Consejo Superior de Investigaciones Cientificas, Institute “Jorge Juan” de Matematicas, Matrid, 1978, 482–484.Google Scholar
  92. Baretto, A.C., Practical Geometry, THE MATYC JOURNAL - a Journal of Mathematics and Computer Education. Vol. 13, No. I (1979), 33–36.Google Scholar
  93. Hunter, M., Teach for Transfer, TIP Publications, El Segundo, California, 1971.Google Scholar
  94. Botkin, J.W., Elmandjra, M. and Malitza, M. (Ed.), No Limits to Learning: Bridging the Human Gap, Club of Rome, Pergamon, 1979.Google Scholar
  95. Pardo, A., J.E., Estrategia Combinada de Modulos Instrucionais e Modelas Matematicas Interdisciplinares para Ensino - Aprendizagem de Matematica a Nivel de Segundo Grau: Um Estudo Exploratorio, master thesis, Departamento de Educacao, Pontificia Universidade Catoloca do Rio de Janeiro, 1979.Google Scholar
  96. Pollak, H.O., La Interaccion entre la Matematica y Otras Disciplinas Escolares, Nuevas tendencias en la ensenanza de la matematica, Volumen IV, Capitulo XII, UNESCO, 1979.Google Scholar
  97. de Solla Price, D.J., Little Science, Big Science, Columbia University Press, 1963.Google Scholar
  98. Schultz, T.W., The Economic Value of Education, Columbia University Press, 1963.Google Scholar
  99. Wilmer, C.B., Modules na Aprendizagem da Matematica, master thesis, Departamento de Matematica,Pontifica Universidade Catolica do Rio de Janeiro, 1976.Google Scholar
  100. 1.
    Sir James Lighthill (Editor), “Newer uses of mathematics”, Penguin, 1978.Google Scholar
  101. 2.
    Treilibs, Vern, Hugh Burkhardt and Brian Low, “Formulation Processes in Mathematical Modelling”, Shell Centre for Mathematical Education, Nottingham, 1980.Google Scholar
  102. 3.
    Burkhardt, Hugh, “Temporary Traffic Lights”, Journal of Mathematical Modelling for Teachers 1 11 (1978).Google Scholar
  103. 4.
    Unified Sciences and Mathematics in Elementary Schools: List of publications from Moore Publishing Company Limited, Box 3036, Durham, North Carolina 27705, U.S.A.Google Scholar
  104. 5.
    Open University, “Mathematics Across the Curriculum”, course PME 233.Google Scholar
  105. 6.
    Groves, Susie, and Kaye Stacey, “The Burwood Box - a course in problem solving”, Burwood State College, Victoria, Australia, 1980.Google Scholar
  106. 7.
    Burkhardt, Hugh, “The Real World and Mathematics”, Blackie and Son, Glasgow, 1981.Google Scholar
  107. 8.
    Treilibs, Vern, Hugh Burkhardt, Kaye Stacey and Malcolm Swan, “Beginning to tackle real problems”, Shell Centre for Mathematical Education, Nottingham, 1980.Google Scholar
  108. 9.
    PAMELA, Shell Centre for Mathematical Education, Nottingham, 1980.Google Scholar
  109. 10.
    Diana Burkhardt and Hugh Burkahrdt, “From Problem to Program - a multimedia introductory course”, Computer Science Department, University of Birmingham, 1981.Google Scholar
  110. 11.
    S. Sharron (Editor), “Applications in School Mathematics”, National Council for Teachers of Mathematics, 1979.Google Scholar
  111. 12.
    C. P. Ormall and others, “Mathematics Applicable”, a series of tests, Schools Council/Hienemann (1976).Google Scholar
  112. 13.
    T. Beeby, H. Burkhardt and R. Fraser, “SCAN - a systematic classroom analysis notation for mathematics lessons”, Shell Centre for Mathematical Education, Nottingham 1979.Google Scholar
  113. Knox, N.C. Numeracy and school leavers: A survey of employers’ needs (Paper no. 12 ). Sheffield: Sheffield Region Centre for Science and Technology, May 1977.Google Scholar
  114. Knox, N.C. Changing needs for mathematics in employment (Report of a pilot survey). Sheffield: Sheffield Region Centre for Science and Technology, September 1979.Google Scholar
  115. 1.
    EITB (1971) The analysis and training of cerain engineering craft occupations. Research Report No. 2. Engineering Industry Training Board, Watford, U.K.Google Scholar
  116. 2.
    Mathews, D. (1977) The relevance of school learning experience to performance in industry. Research Report No. 6. EITB, Watford, UK.Google Scholar
  117. Blum, Werner: Stichwort “Berufliches Schulwesen.” In: Volk, Dieter (ed.), Kritische Stichworter Mathematik . Munchen (Fink) 1979, pp. 15–32.Google Scholar
  118. Damerow, P., Elwitz, U., Keitel, Ch., Zimmer, J.: Elementarmathematik: Lernen fur die Praxis? Ein exemplarischer Versuch zur Bestimmung fachuberschreitender Curriculumziele. Stuttgart (Klett) 1974.Google Scholar
  119. Dawes, W.G., Jesson, D.S.: Is There a Basis of Specifying the Mathematical Requirements of the 16 Year Old Entering Employment? In: International Journal of Mathematics Education in Science and Technology, vol. 10, no. 3, 1979, pp. 391–400.CrossRefGoogle Scholar
  120. Jaeger, J., Schupp, H.: Mathematikunterricht und Arbeitswelt - Zwischenbericht. Sarrbrucken (University) 1979, typescript with appendix.Google Scholar
  121. Knox, C.: Numeracy & School Leavers - A Survey of Employers’ Needs (Sheffield Regional Centre for Science and Technology, Paper no. 12 ), May 1977.Google Scholar
  122. Loercher, G.A.: Allgemeinbildender und berufsbildender Mathematikunterricht. Diskrepanzen und Koordinationsmoglichkeiten. In: ZDM, vol. 12, no. 4., 1980.Google Scholar
  123. Ploghaus, G.: Die Fehlerformen in Metallgewerblichen Fachrechnen und unterrichtliche. Mabnahmen zur Bekampfung der Fehler. In: Die berufsbildende Schule, vol. 19, no. 7/8, 1967, pp. 519–531.Google Scholar
  124. Scholz, R.W.: Berufliche Fallstudien zum stochastischen Denken. In: Beitrage zum Mathematikunterricht 1980. Hannover (Schroedel) 1980, pp. 301.Google Scholar
  125. Straesser, R.: Mathematik in der (Teilzeit-) Berufsschule. In: ZDM, vol. 12, no. 3, 1980, pp. 7684.Google Scholar
  126. 1.
    The Mathematical Skills and Qualities Needed in Graduate Entrants to Industry and Commerce, 1977, I.M.A. Symposium Proceedings No. 17.Google Scholar
  127. 2.
    P.C. Price, “The Mathematical Skills and Qualities Needed in Graduate Entrants to the Chemical Industry”, ibid., pp. 62–63.Google Scholar
  128. 3.
    Sir James Lighthill, “Bridging the Chasm Separating Examination Questions from Real-World Problems”, ibid., pp. 48–49.Google Scholar
  129. 4.
    W.G. Sherman, “The Needs of Technologists in Manufacturing Industry with Special Reference to Heavy Electrical Engineering”, ibid., pp. 84.Google Scholar
  130. 5.
    J.H. McDonnell, “Mathematical Graduates in the Aircraft Industry”, ibid., pp. 38–39.Google Scholar
  131. 6.
    Sir Hermann Bondi, “Introduction to the Symposium”, ibid., pp. 2–3.Google Scholar
  132. 7.
    E.A. Johnston, “Actuary: A Commercial Profession”, ibid., p. 17.Google Scholar
  133. 1.
    Athen, H., & Griesel, H. (Eds.): Mathematikheute, Grundkurs Analysis I. Hannover, 1978.Google Scholar
  134. 2.
    Blum, W.: Einkommensteuern als Thema des Analysisunterrichts in der beruflichen Oberstufe. Die berufsbildende Schule, 1978, 30 (11), 642–651.Google Scholar
  135. 3.
    Blum, W.: Berufliches Schulwesen. In: Kritische Stichworter zum Mathematikunterricht ( Ed.: Volk, D. ), Munchen, 1979, pp. 15–32.Google Scholar
  136. 4.
    Blum, W., & Kirsch, A.: Zur Konzeption des Analysisunterrichts in Grundkursen. Der Mathematikunterricht 1979, 25 (3), 6–24.Google Scholar
  137. 5.
    Fischer, R., & Malle, G.: Fachdidaktik Mathematik, Lehrbrief fur das Fernstudium Padagogik fur Lehrer an hoheren Schulen. Klagenfurt, 1978.Google Scholar
  138. 6.
    Ford, B. & Hall, G. G.: Model Building - An Educational Philosophy for Applied Mathematics.Google Scholar
  139. 7.
    Freudenthal, H.: Mathematics as a Pedagogical Task. Dordrecht, 1973.Google Scholar
  140. 8.
    Kell, A. & Lipsmeier, A.: Berufsbildung in der Bundesrepublik Deutschland - Analyse und Kritik. Schriften zur Berufsbildungsforschung, Vol. 38, Hannover, 1976.Google Scholar
  141. 9.
    Pollak, H. O.: How Can We Teach Applications of Mathematics? Educational Studies in Mathematics, 1969, 2 (3), 393–404.MathSciNetCrossRefGoogle Scholar
  142. 10.
    Pollak, H. O.: The Interaction betwen Mathematics and Other School Subjects. In: New Trends in Mathematical Teaching (Ed.: UNESCO ), Vol IV, Paris, 1979, pp. 232–248.Google Scholar
  143. 11.
    Steiner, H. G.: What is Applied Mathematics? Indian Journal of Mathematics Teaching, 1976, 3 (I), 1–18.Google Scholar
  144. 12.
    Strasser, R.: Apprenticeship and College Mathematics in Technical and Vocational Education. In these proceedings.Google Scholar
  145. 13.
    Wittmann, E.: Grundfragen des Mathematikunterrichts Braunschweig, 1976.Google Scholar
  146. 1.
    Mogens Niss: Goals as a reflection of the needs of society To appear in “Studies in Mathematics Education II”, Unesco.Google Scholar
  147. 2.
    Mogens Niss: The crisis in mathematics Google Scholar
  148. instruction and a new teacher education at grammar school level Int. J. Math. Educ. Sci. Technol., 1977, vol 8, No. 3 (303–321).Google Scholar
  149. 1.
    C. A. Bretschneider: Lehrgebaude der niederenGeometrie, Jena 1844.Google Scholar
  150. J. H. T. Muller: Lehrbuch der Geometrie, 1844. Firschauf (Osterreich): Elemente der Geometrie, Leipz 1877. E. Merary: Nouveaux Elements de Geometrie, Dijon 1906.Google Scholar
  151. 2.
    W. Lietzmann: Der Kongress in Mailand vom 18–20 Sept. 1911, Heft VIII der Ber. u. Mittl., vernalasst durch die IMUK, Leipzig 1912.Google Scholar
  152. 3.
    D. Kratz: Psychologie u. math. Unterricht, Deutsche IMUK - Abhandl. Bd. Ill, Heft 8 Leipzig 1913.Google Scholar
  153. 4.
    F. Klein: Elementarmathematik vom hoherne Standpunkt aus, II. Geometrie, Leipzig 1914, S.4 u.5.Google Scholar
  154. 5.
    Franz A Jungbluth: Mathematischer Arbeitsunterricht, in: Handbuch des Arbeitsunterrichts fur hohere Schulen, 9. Heft, Frankfurt/M 1927. Translation of the quotation by the present author.Google Scholar
  155. 1.
    J. Guckenheimer, On the Bifurcation of Maps of the Interval, Inventiones Math 39 (1977), 165–178.MathSciNetMATHGoogle Scholar
  156. N. Levinson, Coding Theory: A Counter Example to G.H. Hardy’s Conception of Applied Mathematics, Am. Math. Monthly 77 (1970), 249–258.MathSciNetMATHCrossRefGoogle Scholar
  157. 3.
    R.M. May, Biological Population with Nonoverlapping Generagions: Stable Points, Stable Cycles and Chaos, Science 186 (1974), 645–647.Google Scholar
  158. 4.
    R. May and G. Oster, Bifurcation and Dynamic Complexity in Simple Ecological Models, Am. Naturalist, 110 (1976), 573–599.CrossRefGoogle Scholar
  159. 5.
    V. Pless, Error Correcting Codes: Practical Origins and Mathematical Implications, Am. Math. Monthly, 85 (1978), 90–94.MATHCrossRefGoogle Scholar
  160. 6.
    S.M. Pollock, The Modelling Studio (Discouraging the Model Model), in Discrete Mathematics and its Applications, ed. by M. Thompson, Indiana University, Bloomington, 1977, pp. 131–154.Google Scholar
  161. 7.
    Report of the Committee on New Priorities for Undergraduate Education in the Mathematical Sciences, Am. Math. Monthly, 81 (1974), 984–988.Google Scholar
  162. 8.
    N.J.A. Sloane, A Short Course on Error Correcting Codes, CISM 188, New York: Springer-Verlag, 1975.Google Scholar
  163. 9.
    S. Surale and R.F. Williams. The Qualitative Analysis of a Difference Equation of Population Growth. J. Math. Biol, 3 (1976), 1–4.MathSciNetCrossRefGoogle Scholar
  164. 10.
    M. Thompson, The Process of Applied Mathematics in Case Studies in Applied Mathematics Mathematical Association of America, Washington, D.C., 1976, pp. 4–21.Google Scholar

Copyright information

© Birkhäuser Boston, Inc. 1983

Authors and Affiliations

  • Sam O. Ale
    • 1
  • Diego Bricio Hernandez
    • 2
  • Lilia Del Riego
    • 2
  • J. F. Ling
    • 3
  • Ivo W. Molenaar
    • 4
  • Samuel Goldberg
    • 5
  • Aristides Camaragos Barreto
    • 6
  • Hugh Burkhardt
    • 7
  • R. John Gaffney
    • 8
  • F. van der Blij
    • 9
  • Douglas A. Quadling
    • 10
  • P. C. Rosenbloom
    • 11
  • N. Connie Knox
    • 12
  • David Matthews
    • 13
  • Rudolf Straesser
    • 14
  • Robert L. Lindsay
    • 7
  • Peter Price
    • 15
  • Werner Blum
    • 16
  • Mogens Niss
    • 17
  • Helmut Siemon
    • 18
  • Max S. Bell
    • 19
  • Maynard Thompson
    • 20
  • D. Bushaw
    • 21
  • Candido Sitia
    • 22
  • Centro U. Morin
    • 22
  1. 1.Ahmadu Bello UniversityZariaNigeria
  2. 2.Universidad Autonoma MetropolitanaMexico CityMexico
  3. 3.School Mathematics ProjectLondonEngland
  4. 4.University of GroningenGroningenNetherlands
  5. 5.Oberlin CollegeOberlinUSA
  6. 6.Pontificia Universidade Catolica do Rio de JaneiroBrazil
  7. 7.Shell Centre for Mathematical EducationNottinghamEngland
  8. 8.Wattle Park Téachers CentreWattle ParkAustralia
  9. 9.RijksuniversiteitUtrechtNetherlands
  10. 10.Cambridge Institute of EducationEngland
  11. 11.Teachers CollegeColumbia UniversityUSA
  12. 12.SheffieldEngland
  13. 13.Engineering Industry Training BoardWatfordEngland
  14. 14.Universitat BielefeldBielefeldFederal Republic of Germany
  15. 15.Stockton-on-TeesEngland
  16. 16.Gesamthochschule KasselKasselWest Germany
  17. 17.Universitetcenter RoskildeRoskildeDenmark
  18. 18.Pedagogische Hochscule ILudwigsburgWest Germany
  19. 19.The University of ChicagoChicagoUSA
  20. 20.Department of MathematicsIndiana UniversityBloomingtonUSA
  21. 21.Washington State UniversityPullmanUSA
  22. 22.Paderno del GrappaItaly

Personalised recommendations