• Leo H. Klingen
  • Richard S. Pieters
  • I. J. Good
  • Ruma Falk
  • Tibor Nemetz
  • Jim Swift
  • Albert P. Shulte
  • Peter Holmes
  • L. A. Santalo


This report refers to prerequisites relative to hardware, software, and operating systems in the scenario of the school. Then problem categories are described for computer-orientated solutions, namely exercises for beginners, normal algorithms in the lower and upper Secondary Education, subject-overlapping applications and complex projects. Finally conclusions are drawn for the curriculum of Mathematics in following years.


School Curriculum Mathematics Curriculum Statistical Concept Complex Project Intuitive Judgement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cohen, J. and Hansel, C. “The Idea of Distribution”. The British Journal of Psychology Vol. 46 Part 2 (May 1955a) pp. 111–121.CrossRefGoogle Scholar
  2. 2.
    Piaget, J. and Inhelder, B. The Origin of the Idea of Chance in Children. New York: Norton and Company, 1975.Google Scholar
  3. 3.
    John Cohen “Subjective Probability” Scientific American Vol 197, No. 5, November 1957 p. 138.CrossRefGoogle Scholar
  4. 4.
    General Education in School and College. Harvard University Press. Cambridge, Mass. 1956. p. 56.Google Scholar
  5. Birnbaum, Allan (1971). “A perspective for strengthening scholarships in statistic”, The American Statistician 25, 14–17.Google Scholar
  6. Evans, Christopher (1979). The Micro Millenium ( New York: Viking Pres, 1980 ).Google Scholar
  7. Feller, W. (1950). An Introduction to Probability Theory and its Applications, Vo. I ( New York: Wiley).Google Scholar
  8. Good, I. J. (1950). Probability and the Weighing of Evidence (London: Charles Griffin; New York: Hafners.MATHGoogle Scholar
  9. Good, I. J. (1972). “Statistics and today’s problems”, The American Statistician 26, 11–19.Google Scholar
  10. Good, I. J. (1977). “Dynamic probability, computer chess, and the measurement of knowledge”, Machine Intelligence 8 (eds. E. W. ELcock and D. Michie Ellis Norwood Ltd. & Wylie ), 137–150.Google Scholar
  11. Good, I. J. (1978). “Fallacies, statistical”, in The International Encyclopedia of Statistics ed. William H. Kruskal and Judith M. Tanur; The Free Press ), 337–349.Google Scholar
  12. Huff, D. (1954). How to Lie with Statistics ( London: Gol I ancz).Google Scholar
  13. Kimble, Gregory A. (1978). How to Use (and Misuse) Statistics ( Englewood Cliffs, N.J.: Prentice-Hall).Google Scholar
  14. Peirce, Charles Saunders (1878). “The probability of induction”, Popular Science Monthly, reprints in The World of Mathematics, 2 (ed. James R. Newman; New York: Simon & Schuster ), 1341–1354.Google Scholar
  15. Pieters, Richard S. (1976). “Statistics in the high-school curriculum”, The American Statistician 30, 134–139.Google Scholar
  16. Polya, G. (1954). Mathematics and Plausible Reasoning, two volumes ( Princeton: University Press).Google Scholar
  17. Roberts, Harry V. (1978). “Statisticians can matter”, The American Statistician 32, 45–57 (with discussion).Google Scholar
  18. Snee, R. D. et al (1979). “Preparing statisticians for careers in industry”, American Statistical Association 1979 Proceedings of the Section on Statistical Education (Amer. Stat. Assoc., Washington, D.C.).Google Scholar
  19. Tankard, J. W. Jr. (1979). “The H. G. Wells quote on statistics”, Historia Mathematica 6 30–33.MathSciNetMATHCrossRefGoogle Scholar
  20. Tanur, Judith M., Mosteller, F., Kruskal, W. J., Link, R. F., Pieters, R. S., and Rising, G. R. (editors) (1972). Statistics: a Guide to the Unknown ( San Francisco: Holden-Day ).Google Scholar
  21. Tee, G. J. (1980). “H. G. Wells and statistics”, Historia Mat hem atica 6 447–448.MathSciNetCrossRefGoogle Scholar
  22. Wagner, G. R. & Motazed, B. (1972). “The Proctorial System of instruction combined with computer pedagogy for teaching applied statistics”, The American Statistician 26, 36–39.Google Scholar
  23. Weaver, Warren (1963). Lady Luck (New York: Anchor Book, Doubleday and Co.).Google Scholar
  24. Weyl, Hermann (1931). The Theory of Groups and Quantum Mechanics (London: Methuen: tr. by H. P. Robertson from the German of 1928 ).Google Scholar
  25. Zelinka, Martha (1980). “The state of mathematics in our schools”, American Mathematical Monthly 87, 428–432.MathSciNetCrossRefGoogle Scholar
  26. Dawes, R.M. Shallow psychology. In J.S. Carrol & UJ.W. Payne (Eds.), Cognition and social behavior. Potomac, Md.: Erlbaum, 1976.Google Scholar
  27. Einhorn, H.J. * Hogarth, R.M. Confidence in judgment: Persistence of the illusion of validity. Phychological Review, 1978, 85,395–416.CrossRefGoogle Scholar
  28. Falk, R. The perception of randomness. Doctoral dissertation (in Hebrew). Jerusalem: The Hebrew University, 1975.Google Scholar
  29. Fischoff, B., Slovic, P. & Lichtenstein, S. Subjective sensitivity analysis. Organizational Behavior and Human Performance, 1979, 23, 339–359.CrossRefGoogle Scholar
  30. Goldberg, L.R. Simple models or simple processes? Some research on clinical subjects. American Psychologist, 1968, 23, 483–496.CrossRefGoogle Scholar
  31. Kahneman, D. & Tversky, A. Subjective probability: A judgment of representativeness. Cognitive Psychology, 1972, 1, 430–454.CrossRefGoogle Scholar
  32. Kahneman, D. & Tversky, A. Intuitive prediction: Biases and corrective procedures. TIMS Studies in Management Science, 1979, 12, 313–327.Google Scholar
  33. Lyon, D. & Slovic, P. Dominance of accuracy information and neglect of base rates in probability estimation. Acta Psycholoqica, 1976, 40, 287–298.CrossRefGoogle Scholar
  34. Nisbett, R. & Ross, L. Human inference: Strategies and shortcomings of social judgment. Englewood Cliffs: Prentice-Hall, 1980.Google Scholar
  35. Popper, K.R. The logic of scientific discovery. London: Hutchinson, 1959.MATHGoogle Scholar
  36. Slovic, P. From Shakespeare to Simon: Speculations - and some evidence - about man’s ability to process information. ORI Research Monograph, 1972 12(2).Google Scholar
  37. Slovic, P. Toward decisions. In performance andErlbaum, in press. understanding and improving W. Howell (Ed.), Human productivity. Hillsdale, N.J.Google Scholar
  38. Slovic, P., Fischoff, B. & Lichtenstein, S. Behavioral decision theory. Annual Review of Psychology, 1977, 28, 1–39.CrossRefGoogle Scholar
  39. Tversky, A. & Kahneman, D. Judgement under uncertainty: Heuristics and biases. Science, 1974 185, 1124–1131.CrossRefGoogle Scholar
  40. Wason, P.C. & Johnson-Laird, P.N. Psychology of reasoning. Cambridge: Harvard University Press, 1972.Google Scholar
  41. 1.
    Austin, Joe Dan, Experimental study of the effects of three intructional methods in basic probability and statistics, J. for research in Math. Education, 5, 1974, 146–154.CrossRefGoogle Scholar
  42. 2.
    Bognor, K. y Nemetz, T. On teaching statistics in secondary level, Educational Studies in Mathemati cs, 8, 1977, 399–404.CrossRefGoogle Scholar
  43. 3.
    Engel, A. Teaching probability and statistics in intermediate grades, Intern. Journal of Math Educ. 2, 1971.Google Scholar
  44. 4.
    Engel, A. Wahrsecheinlichkeit and Statistik, Klett, Stuttgart, vol. 1, 1975, vol. 2, 1976.Google Scholar
  45. 5.
    Engel, A. The Probalistic Abacus, Educational Studies in Math, 6, 1975, 1–22.MATHCrossRefGoogle Scholar
  46. 6.
    Fischbein, E. The intuitive sources of probalistic thinking in children, Reidel, 1975.Google Scholar
  47. 7.
    Freudenthal, H. Probability and Statistics, Amsterdam, 1965.Google Scholar
  48. 8.
    Glaymann, M. y Varga, T. Les probabilies a l’Ecole, CEDIC, 1973.Google Scholar
  49. 9.
    Las Aplicaciones en la Ensenanza y el Aprendizaje de la Matematica en la Escuela Secundaria, Oficina de Ciencias, UNESCO, Montevideo, 1974.Google Scholar
  50. 10.
    Mies, T., Otto, M., Reiss, V., Steinbring, H. y Vogel, D. Tendencies and problems of the Training of Mathematical Teachers, Institut fur Didaktik der Mathematik, Universitat Bieldfield, 1975.Google Scholar
  51. 11.
    Nuevas Tendencias en la Ensenanza de la Matematica III, 1973; Nuevas Tendencias en la Ensenanza de la . Matematica IV, 1979 (Traducciones castellanas de los New Trends Ill and IV) UNESCO.Google Scholar
  52. 12.
    Otte, Michael, Formacion y vida profesional de los profesores de Matematica, Nuevas Tendencias IV, UNESCO, Montevideo 1979.Google Scholar
  53. 13.
    Rade, L. The Teaching of Probability and Statistics, Stockholm, Almquist et Wiksell, 1970.Google Scholar
  54. 14.
    Symposium on Combinarorics and Probability in Primary Schools, Warsaw, 15–18 Agosto 1975.Google Scholar
  55. 15.
    Synopses for modern secondary school mathematics, OECD, 1961.Google Scholar
  56. 16.
    Teaching Statistics, Revista publicada par Dep. of Probability and Statistics, Sheffield University, Sheffield, England.Google Scholar
  57. 17.
    Wood, R. y Brown, M. Mastery of simple probability ideas among G.C.E. ordinary level mathematics candidates, International J. Math. Ed. Sc. Techn 7, 1976, 297–306.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston, Inc. 1983

Authors and Affiliations

  • Leo H. Klingen
    • 1
  • Richard S. Pieters
    • 2
  • I. J. Good
    • 3
  • Ruma Falk
    • 4
  • Tibor Nemetz
    • 5
  • Jim Swift
    • 6
  • Albert P. Shulte
    • 7
  • Peter Holmes
    • 8
  • L. A. Santalo
    • 9
  1. 1.Helmholtz GymnasiumBonnWest Germany
  2. 2.Moses Brown SchoolProvidenceUSA
  3. 3.Virginia Polytechnic Institute and State UniversityBlacksburgUSA
  4. 4.The Hebrew UniversityJerusalemIsrael
  5. 5.Hungarian Academy of SciencesBudapestHungary
  6. 6.Nanaimo Senior Secondary SchoolNanaimoCanada
  7. 7.PontiacUSA
  8. 8.University of SheffieldSheffieldEngland
  9. 9.Buenos AiresArgentina

Personalised recommendations