• Eric Gower
  • Gerhard Holland
  • Jean Pedersen
  • Julio Castineira Merino
  • Koichi Abe
  • John Del Grande
  • Branko Grunbaum
  • Robert Osserman
  • M. C. Mitchelmore
  • Dieter Lunkenbein
  • Kiyoshi Yokochi
  • Alan J. Bishop


For a long time now, there has been a question mark over geometry in the secondary school. The struggle to find a suitable alternative to the ELements of Euclid as a school text or certainly as a basic approach to geometry teaching has occupied the minds of mathemics educators for well over a century. In the preface to an edition of the Elements in 1862, the following was written:

“Numerous attempts have been made to find an appropriate substitute for the Elements of Euclid; but such attempts, fortunately, have hitherto been made in is extremely improbable, if Euclid were once abandoned, that any agreement would exist as to the author who should replace him”.(1)


Geometrical Object Spatial Ability Geometric Problem Process Objective Construction Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Todhunter, I.: 1879, The Elements of Euclid, Macmillan and Co., London, p. vii.Google Scholar
  2. 2.
    Bender, P. and Schreiber, A.: 1980, “The principle of operative concept formation in geometry teaching.” Educational Studies in Mathematics 11, pp. 59–90.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Fletcher, T.J.: 1971, “The teaching of geometry, present problems and future aims”, Educational Studies in Mathematics 3, pp. 395–412.CrossRefGoogle Scholar
  4. 4.
    Freudenthal, H.: 1978, Weeding and Sowing, D. Reidel, Dordrecht, p. 277.Google Scholar
  5. 5.
    IOWO: 1976, “Five years IOWO”, Educational Studies in Mathematics 7, pp. 183–367.Google Scholar
  6. 6.
    Mathematics for the Majority: 1970, Machines, Mechanisms and Mathematics, Chatto and Windus, St. Albans and London.Google Scholar
  7. 7.
    Willson, W.: 1977, The Mathematics Curriculum: Geometry, Blackie and Son Ltd., Glasgow and London, p. 121–122.Google Scholar
  8. 8.
    Freudenthal, H.: 1973, Mathematics as an Educational Task, D. Reidel, Dordrecht, pp. 403, 405.Google Scholar
  9. 1.
    Holland, G.: Das Beweisen geometrischer Satze in der Sekundarstufe I unter verschiedenen Aspekten von Geometrie. In: Didaktik der Mathematik 7 (1979), 104–116.Google Scholar
  10. 2.
    Kirsch, A.: Aspects of Simplification in Mathematics Teaching. In: Proceedigs of the Third International Congress on Mathematical Education. Karlsruhe, 1977.Google Scholar
  11. 3.
    Bell, A.W.: The Learning of General Mathematical Strategies. Shell Centre for Mathematical Education, University of Nottingham, 1976.Google Scholar
  12. 4.
    Holland, G.: Unterrichtsstrategien zum Gewinnen und Beweisen geometrischer Satze. In: Praxis der Mathematik 22 (1980), 97–113.Google Scholar
  13. 5.
    Freudenthal, H.: Mathematik als padegogische Aufgabe Bd.2, Stuttgart 1973.Google Scholar
  14. 6.
    Holland, G.: Geometrische Berechnunsprobleme in der Sek. I. In: Beitrage zum Mathematikungericht 1980. Hannover 1980.Google Scholar
  15. 1.
    George P.: How to Solve It, Second Edition, Princeton 1973 (p. 172 ).Google Scholar
  16. 2.
    Harold J.: Mathematics a Human Endeavor, Freeman 1970 (p. 427 ).Google Scholar
  17. 3.
    G. Polya, Mathematical Discovery, Vol. 2, John Wiley and Sons, Inc. 1960 (p. 124 ).Google Scholar
  18. 4.
    Phares G. O’Daffer and Stanley R. Clemens, Geometry. An Investigative Approach, Addison-Wesley 1976 (p. 270 ).Google Scholar
  19. 1.
    Shape K-9, J. Del Grande, North York Board of Education.Google Scholar
  20. 2.
    Transformations K-9, J. Del Grande, North York Board of Education.Google Scholar
  21. 3.
    Life Science Library - Light and Vision (p. 9-I5). The Child’s Conception of Space, Piaget and Inhelder, Routledge and Kegan Paul, London 1956.Google Scholar
  22. 4.
    The Child’s Conception of Geometry, Piaget, Inhelder and Szeminska, Harper and Row, New York 1964.Google Scholar
  23. 5.
    Geometry and Visualization, Creative Publications, Palo Alto, CA 1977.Google Scholar
  24. 6.
    Space and Geometry, Research Workshop, Eric Center for Science, Mathematics and Environmental Education, Columbus, Ohio 1976.Google Scholar
  25. 7.
    Right Brained Kids in Left-Brained Schools, Madeline Hunter, Today’s Education, Vol. 65, No. 4.Google Scholar
  26. 8.
    The Right Hemisphere’s Role in Problem Solving, Grayson Wheatley, Arithmetic Teacher, Nov. 1977.Google Scholar
  27. 9.
    How the Brain Works, Basic Books, New York 1975.Google Scholar
  28. 10.
    Tessellations the Geometry of Pattern, Bezuszka, Kenney, Silvey, Creative Publications 1977.Google Scholar
  29. 12.
    Creating Escher - Type Drawings, Ranucci and Teeters, Creative Publications, Palo Alto, CA 1977.Google Scholar
  30. 13.
    North York Guidelines for Mathematics K-6.Google Scholar
  31. 14.
    North York Geometry Units K-6, North York Board of Education, c/o Coordinator of Mathematics, 5050 Yonge Street, Willowdale, Ontario, Canada M2N 5N8.Google Scholar
  32. 1.
    Jean Dieudonne, Abrege d’histoire des mathematiques, 1700–1900; Paris, Hermann 1978, Vol. I, p. 11.Google Scholar
  33. 2.
    Michael Spivak, A Comprehensive Introduction to Differential Geometry, Vols, 1–5, 2nd ed., Publish or Perish Press, Berkeley 1979, Vol. 5, p. 608.Google Scholar
  34. 3.
    Andre Weil, “Sur l’etude algebrique de certains types de lois de mariage (Systeme Murngin),” Appendix to Part I of Claude Levi-Strauss, Les structures elementaires de la parente, Presses Universitaires Francaises, Paris 1949, pp. 278–285. (Reprinted in Weil’s Collected Works, Vol. I, pp. 390–397, with commentary on pp. 567–568.)Google Scholar
  35. 4.
    Roman Jakobson, “Linguistics and Poetics,” in Style in Language, ed. T. Sebeck, MIT Press, Cambridge 1960, p. 358.Google Scholar
  36. 5.
    Hans Niels Jahnke, “Numbers and quantities: Pedagogical, philosophical and historical remarks,” Proceedings of ICME IV, Berkeley 1980.Google Scholar
  37. 6.
    Carl Friederich Gauss, “Fragen zur Metaphysik der Mathematik,” in Werke, Vol. XII, pp. 396–397.Google Scholar
  38. 7.
    Claude Levi-Strauss, The Savage Mind, University of Chicago Press, 1966, p. 247.Google Scholar
  39. 8.
    Roland Barthes, Critical Essays, translated from the French by Richard Howard, Northwestern University Press, Evanston 1972, p. 152.Google Scholar
  40. 9.
    Julia Kristeva, “Modern Theater Does Not Take (A) Place,” Sub-Stance N, 18 /19, 1977, p. 131.Google Scholar
  41. 10.
    David Pimm, “Why the History of Mathematics should not be rated X—The need for an appropriate epistemology of mathematics for mathematics education,” Proceedings of ICME IV, Berkeley 1980.Google Scholar
  42. 11.
    Shiing-shen C., Selected Papers, Springer-Verlag, New York 1978, p. 12.MATHGoogle Scholar
  43. Campbell, D.T. Parallelogram reproduction and the “carpentered world” hypothesis: Suggestions for cross-cultural research. Unpublished paper, Northwestern University, 1969.Google Scholar
  44. Mitchelmore, M.C. The perceptual development of Jamaican students. (Unpublished doctoral dissertation, The Ohio State University, 1974.)Google Scholar
  45. Dissertation Abstracts International, 1975, 35, 7130A.Google Scholar
  46. Mitchelmore, M.C. Predictions of developmental stages in the representation of regular space figures. Journal for Research in Mathematics Education, 1980, II, 83–93.Google Scholar
  47. Piaget, J., Inhelder, B. The child’s conception of space. New York: Norton, 1967.Google Scholar
  48. Wursten, H. L’evolution des comparaisons de longueurs de l’enfant a l’adulte. Archives de Psychologie, 1947, 32, 1–144.Google Scholar
  49. 1.
    Wirszup. Breakthroughs in the Psychology of Learning and Teaching Geometry. In L. Martin (Ed.), Space and Geometry. Columbus, Ohio: ERIC Clearinghouse for Science, Mathematics and Environmental Education, 1976. pp. 75–97.Google Scholar
  50. 1.
    Yokochi, K., (1978), Perspective Geometry and Its Meaning in Educatin. Bulletin for Math. Ed. Study, Vol. 19, No. 1–2, 10–21.Google Scholar
  51. 2.
    Yokochi, K., (1979), From Line to Plane Child’s Map. Bulletin for Math. Ed. Study, Vol. 20, No. I2, 29–44.Google Scholar
  52. Anastasi, A. Differential Psychology. Macmillan, New York, 1958.Google Scholar
  53. Bishop, A.J. The use of structural apparatus and spatial ability–a possible relationship. Research in Education, 1973, 9, 43–49.MathSciNetGoogle Scholar
  54. Bishop, A.J. Visual Mathematics. Proceedings of the ICMI-IDM Regional Conference on the Teaching of Geometry. IDM, Bielefeld, West Germany, 1974, 165–189.Google Scholar
  55. Bishop, A.J. Visualising and mathematics in a pre-technological culture. Educational Studies in Mathematics. 1979, I0, 135–146.CrossRefGoogle Scholar
  56. Bishop, A.J.: Spatial abilities and mathematics education–a review. Educational Studies in Mathematics. 1980, II, 257–269.Google Scholar
  57. Bloom, B.S., Englehard, M.D., Furst, E.J., Hill, W.H. and Kratwohl, D.R. (Eds.) Taxomony of educational objectives: The classification of educational goals. Handbook I: Cognitive domain. David McKay Company, New York, 1956.Google Scholar
  58. Fennema, E. Women and girls in mathematics–equity in mathematics education. Educational Studies in Mathematics. 1979, 10, 389–401.CrossRefGoogle Scholar
  59. Fischbein, E., Tirosh, D. and Hess, P. The intuition of infinity. Educational Studies in Mathematics. 1979, 10, 3–40.MATHCrossRefGoogle Scholar
  60. Hadamard, J. The Psychology of Invention in the Mathematical Field. Dover, London, 1945.MATHGoogle Scholar
  61. Kent, D. and Hedger, K. Growing tall. Educational Studies in Mathematics. 1980, 11, 137–179.MATHGoogle Scholar
  62. Krutetskii, V.A. The Psychology of Mathematical Abilities in Schoolchildren. University of Chicago Press, 1976.Google Scholar
  63. Lean, G.A. The training of spatial abilities: A bibliography. Mathematics Education Centre Report no. 8. Mathematics Education Centre, Papua New Guinea University of Technology, Lae, Papua New Guinea, 1980.Google Scholar
  64. MacFarlane Smith, I. Spatial Ability: Its Educational and Social Si.nificance. University of London Press, London, 964.Google Scholar
  65. McKim, R.H. Experiences in Visual Thinking. Wadsworth, California, 1972.Google Scholar
  66. Michael, W.B., Guilford, J.P., Fruchter, B. and Zimmerman, W.S. The description of spatial-visualization abilities. Educational and Psychological Measurement. 1957, 17, 185–199.CrossRefGoogle Scholar
  67. Myers, C.T.: Some observations of problem solving in spatial relations tests. College Entrance Examination Board Research Bulletin RB-58-I6. Educational Testing Service, Princeton, New Jersey, 1958.Google Scholar
  68. Piaget, J. and Inhelder, B. The Child’s Conception of Space. Routledge and Kegan Paul, London, 1956.Google Scholar
  69. Piaget, J., Inhelder, B. and Szeminska, A. The Child’s Conception of Geometry. Routledge and Kegan Paul, London, 1980.Google Scholar
  70. Werdelin, I. Geometrical ability and the space factor in boys and girls. University of Lund Press, Sweden, 1961.Google Scholar

Copyright information

© Birkhäuser Boston, Inc. 1983

Authors and Affiliations

  • Eric Gower
    • 1
  • Gerhard Holland
    • 2
  • Jean Pedersen
    • 3
  • Julio Castineira Merino
    • 4
  • Koichi Abe
    • 5
  • John Del Grande
    • 6
  • Branko Grunbaum
    • 7
  • Robert Osserman
    • 8
  • M. C. Mitchelmore
    • 9
  • Dieter Lunkenbein
    • 10
  • Kiyoshi Yokochi
    • 11
  • Alan J. Bishop
    • 12
  1. 1.Fareham Park SchoolFarehamEngland
  2. 2.Universitat GeissenGeissenWest Germany
  3. 3.University of Santa ClaraSanta ClaraUSA
  4. 4.INB de CuellarSpain
  5. 5.Osaka Kyoiku UniversityTennojiJapan
  6. 6.NewmarketCanada
  7. 7.University of WashingtonSeattleUSA
  8. 8.Stanford UniversityStanfordUSA
  9. 9.University of West IndiesKingstonJamaica
  10. 10.Universite de SherbrookeSherbrookeCanada
  11. 11.Yamanashi UniversityYamanashiJapan
  12. 12.University of CambridgeCambridgeEngland

Personalised recommendations