Mathematics Curriculum

  • H. B. Griffiths
  • Ubiratan D’Ambrosio
  • Stephen S. Willoughby
  • Mohammed El Tom
  • W. H. Cockroft
  • David F. Robitaille
  • Shigeo Katagiri
  • Alan Osborne
  • Hans-Christian Reichel
  • E. E. Oldham
  • Tashio Miyamoto
  • Ko Gimbayashi
  • James M. Moser
  • Harold C. Trimble
  • Ping-Tung Chang
  • Zalman Usiskin
  • Harry S. J. Instone
  • Casey W. Humphreys
  • Bruce E. Meserve
  • Leo Rogers
  • Maassouma M. Kazim


How may we distinguish good work from bad? How can we devise critical standards for evaluating Mathematics Education in its environment. I shall confine these questions to the general area of mathematical curricula, by consideration of well-known examples: more recent ones will presumably be reported at this Congress. It is necessary to warn you of my (conscious) biasses: (i) I am a University teacher of Mathematics in England (ii)I believe that what finally matters is not the administration, not the hierarchy of inspectors etc., but the teachers and their pupils.


Mathematics Education Mathematics Teacher School Mathematics Curriculum Development Problem Context 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atkin, R.H. Mathematical Structure in Human Affairs, (1974),Heinemann.Google Scholar
  2. 2.
    Atkin, R.H. A study area in Southend-on-Sea. Urban Structure Research Porject. Research Report III. (1973). Dept. of Math., Univ. of Essex.Google Scholar
  3. 3.
    Board of Education, Special Reports on the teaching of mathematics in the U.K., (1912), H.M.S.O.Google Scholar
  4. 4.
    Cundy, H.M. Carribbean Mathematics Project: an evaluation study, (1976), British Council.Google Scholar
  5. 5.
    Freudenthal, H. (Editor). Change in Mathematics Education since the late 1950’s-Ideas and Realization,’ Educ. Studies in Math. (1978).Google Scholar
  6. 6.
    Griffiths, H.B. ‘Mathematics Education To-day’, Int. J. Math. Educ. Sci. & Tech. (1975) 6 pp. 3–15.CrossRefGoogle Scholar
  7. 7.
    The Structure of Pure Mathematics’ (Chapter I of Mathematical Education (1978) Edited by G.Wain. Van Nostrand.Google Scholar
  8. 8.
    Griffiths, H.B. ‘Mathematics Education among other contexts for mathematics’. MI Symposium, Helsinki (1978), to appear from Bielefeld.Google Scholar
  9. 9.
    Howson, A.G. Article on ‘Great Britain’ (1967) pp. 183–224.Google Scholar
  10. 10.
    A critical analysis of curriculum development in mathematical education’ (Chapter VII of New trends in mathematics teaching, (1979) UNESCUT- Google Scholar
  11. 11.
    Lindsay, R. Basic Skills for Mathematics in Engineering, Shell Centre Research Report, Nottingham (1977).Google Scholar
  12. 12.
    McLane, R.R. The Training of Mathematicians(1973) Social Science Research Council.Google Scholar
  13. 13.
    Nottingham Conference Proceedings. Adapting Unviversity Mathematics to Current and Future Educational needs (1975).Google Scholar
  14. 14.
    Unversity Mathematics Curricula and the Future(1976).Google Scholar
  15. 15.
    Teaching methods for Undergraduate Mathematics(1977).Google Scholar
  16. 16.
    Assessment and Service Teaching (1978).Google Scholar
  17. 17.
    Teaching Applications of Mathematics (1979).Google Scholar
  18. 18.
    Nuffield Foundation. Various Science Projects (1970-) Longman, Penguin.Google Scholar
  19. 19.
    Ormell, C. Mathematics Applicable (1975) Schools Council Sixth Form Math. Project, Heinemann.Google Scholar
  20. 20.
    Pollak, H.O. ‘The Interaction between mathematics and other school subjects’. (Chap. XII of New trends in mathematics teaching (1979) UNESCOT-Google Scholar
  21. 21.
    SMSG. Final report.Google Scholar
  22. 22.
    UMSP (Undergraduate Math. Applications Project) Education Development Center, Newton, Mass.Google Scholar
  23. 23.
    Williams, D. (Editor) Learning and Applying Mathematics (1978) AAMT.Google Scholar
  24. 24.
    Mathematics-Theory into Practice (1980) AAMT.Google Scholar
  25. 25.
    Wilson, B.J. Article on ‘West Indies’ (1967), pp. 355–379.Google Scholar
  26. 26.
    Yates, J. Four Mathematical Classrooms: an enquiry into teaching method. (1978) REsearch Report, Southampton.Google Scholar
  27. 1.
    Griffiths, H.B. and A.G. Howson, Mathematics: Society and Curricula, Cambridge Unversity Press, 1974.Google Scholar
  28. 2.
    ILO, Growth, Employment and Equity: A comprehensive strategy for Sudan, International Labour Office, Geneva, 1976.Google Scholar
  29. 3.
    NCED (National Centre for Educational Research), Report on evaluation of modern maths in intermediate schools, Institute of Education at Bakht Er Ruda, 1980.Google Scholar
  30. (BA).
    L. Bauer: Mathematische Fahigkeiten; UTB No. 835, Schoneingh, Paderborn 1978.Google Scholar
  31. (BE).
    M.S. Bell (ed.): A preliminary survey of materials available worldwide for the teaching of applications at the school level; paper prepared for ICME IV, Univ. Chicago, 1980.Google Scholar
  32. (DI).
    C. Dixon: Numerical Analysis (written for sixth-year school pupils); Black/Chambers, Glasgow/Edinburgh, 1977.Google Scholar
  33. (DP).
    DW. Dorfler und W. Peschek: Die Situation des Mathematikunterrichtes an den Hoheren Schulen; Festband “10 Jahre Univ. F. Bildungswiss. Klagenfurt 1980.”Google Scholar
  34. (EN1).
    A. Engel: The relevance of modern fields of applied mathematics for mathematics education; Ed. Stud. in Math. 2 (1969), 257–269.Google Scholar
  35. (EN2).
    A. Engel: The role of algorithms and computers in teaching mathematics at school; New Trends in Math. Teaching, vol. 4, UNESCO 1979, 249–277.Google Scholar
  36. (FI).
    R. Fischer: Erste Einfuhrung in die Wahrscheinlichkeitsrechnung in der Schule; Austrian Math. Society, Didaktik-Reihe, vol. 4, 1980.Google Scholar
  37. (FK).
    E. Fian, H. Keilbauer et al: EDV fur allgemeinbildende Hohere Schulen (Electronic Data Processing for Secondary Schools), Verlag Manz, Vienna 1979.Google Scholar
  38. (FL).
    T.J. Fletcher: Linear Algebra through its applications; Van Nostrand und Reinhold, London 1973.Google Scholar
  39. (NCA).
    An Agenda for Action, Recommendations for School Mathematics of the I980s, Nat. Council of Teachers of Math., Reston, VA 1980.Google Scholar
  40. (PI).
    J. Pieper: Was heisst akademisch? Zwei Vershcuhe uber die Chancen der Universitat heute; Kosel-Verlag, Munchen (Munich), 2. erw. Auflage, 1964.Google Scholar
  41. (PO).
    H.O. Pollak: The interaction between mathematics and other school subjects; New Trends in Math. Teaching, vol. 4, UNESCO 1979, 232–248.Google Scholar
  42. (RA).
    C. Rorres and H. Anton: Applications of Linear Algebra, 2nd ed., J. Wiley, New York 1979.zbMATHGoogle Scholar
  43. (RE1).
    H.-Ch. Reichel: Zur Didaktik der Intergralrechnung fur Hohere Schulen; Didaktik der Math. 3 (1974), 167–188.Google Scholar
  44. (RE2).
    H.-Ch. Reichel: Zum Skalarprodukt im Unterricht an der Sekundarstufe, eine didaktische Analyse; Didaktik der Math. 8 (1980), 102–132.Google Scholar
  45. (SBE).
    “Statistics by Examples,” vol. I - 8, ed. by F. Mosteller, W. Kruskal, R. Link, R. Pieters, G. Rising, M. Zelinka, S. Weisberg, Addison Wesley 1973.Google Scholar
  46. (SSW).
    K. T. SMith, D.S. Salmon, S.L. Wagner: Practical and mathematical aspects of the problem of reconsructing objects from radiographs, Bull. AMS 83 (1977).Google Scholar
  47. (SMP).
    The School Math. Project (Further Math. Series 5: Statistics and Probability) Cambridge 1971. Organisation for Economic Cooperation and Development. New Thinking in School Mathematics. Paris: OECD, 1961.Google Scholar
  48. Steiner, H.G. (Ed.). Comparative Studies of Mathematics Curricula Change and Stability 1960–1980 (Materialien and Studien, Band 19).Google Scholar
  49. Bielefeld: Institut fur Didaktik der Mathematic der Unversitat Bielefeld, 1980.Google Scholar
  50. Barnett, V. “Teaching Statistics in Schools in England and Wales,” pp.444–463.Google Scholar
  51. Fletcher, T.J. “Algebra in English Secondary Schools: Change over Twenty Years,” 354–369.Google Scholar
  52. Hirstein, J.J., Weinzweig, A.I., Fey, J.T., & Travers, K.J. “Elementary Algebra in the United States: 1955–1980,”pp.370–394, especially pp. 390–391.Google Scholar
  53. Howson, A.G. “Geometry in Great Britain in Recent Years,” pp.304–325.Google Scholar
  54. Howson, A.G. “Some Remarks on Case Studies,” pp. 502–508.Google Scholar
  55. Nemetz, T. “Pre-University Stochastical Education in Hungary,” p.478.Google Scholar
  56. Ohuche, R.O. “Developments in the Teaching of Statistics and Probability since 1960: The Experience of Nigeria,” pp.486–501.Google Scholar
  57. Oldham, E.E. “Case Studies in Algebra Education: Ireland,” pp.395–425.Google Scholar
  58. Sawada, T. “Elementary Algebra in Lower Secondary School in Japan,” pp.432–433.Google Scholar
  59. Travers, K.J. “The Second International Mathematics Study: An Overview,” pp.188–189.Google Scholar
  60. Vollrath, H.J. “A Case Study in the Development of Algebra Teaching in the FRG,” pp.435–443, especially pp.440–441.Google Scholar
  61. Westbury, I. “Case Studies in curriculum Change: Introduction,” pp.270–276.Google Scholar
  62. Beardslee, Edward C. “Teaching Computational Skills with a Calculator.” Developing Computational Skills, 1978 Yearbook of the National Council of Teachers of Mathematics, edited by Marilyn N. Suydam, pp. 226–241. Reston, Virginia: NCTM, 1978.Google Scholar
  63. Cicero, Joseph E., Moderator of Panel discussion of “What Math for the 1980’s”, “Mathematics for the 1980’s” Conference, Augusta College, Augusta, Georgia, 1979.Google Scholar
  64. Downes, John P., “Mathematical Issues for the 1980’s” Speech given at “Mathematics for the 1980’s” Conference, Augusta College, August, Georgia, 1979.Google Scholar
  65. Johnson, Donovan A., and Gerald R. Rising. “Guidelines for Teaching Mathematics”, 2nd Edition, Belmont, California: Wadsworth Publishing Co., Inc., 1972, pp. 418–435.Google Scholar
  66. Usiskin, Zalman, “What Should not be in the Algebra and Geometry Curricula of Average College-Bound Students?” The Mathematics Teacher 73 (September 1980): pp. 413–424.Google Scholar

Copyright information

© Birkhäuser Boston, Inc. 1983

Authors and Affiliations

  • H. B. Griffiths
    • 1
  • Ubiratan D’Ambrosio
    • 2
  • Stephen S. Willoughby
    • 3
  • Mohammed El Tom
    • 4
  • W. H. Cockroft
    • 5
  • David F. Robitaille
    • 6
  • Shigeo Katagiri
    • 7
  • Alan Osborne
    • 8
  • Hans-Christian Reichel
    • 9
  • E. E. Oldham
    • 10
  • Tashio Miyamoto
    • 11
  • Ko Gimbayashi
    • 11
  • James M. Moser
    • 12
  • Harold C. Trimble
    • 13
  • Ping-Tung Chang
    • 14
    • 15
  • Zalman Usiskin
    • 16
  • Harry S. J. Instone
    • 17
  • Casey W. Humphreys
    • 18
  • Bruce E. Meserve
    • 19
  • Leo Rogers
    • 20
  • Maassouma M. Kazim
    • 21
  1. 1.University of SouthamptonSouthamptonEngland
  2. 2.Institut fur Didaktik der MathematicUnicampBrasil
  3. 3.New York UniversityNew YorkUSA
  4. 4.University of KhartoumSudan
  5. 5.The New University of UlsterLondenderryNorthern Ireland
  6. 6.University of British ColumbiaVancouverCanada
  7. 7.Yokohama National UniversityJapan
  8. 8.Ohio State UnviersityColumbusUSA
  9. 9.Department of MathematicsUnveristy of ViennaAustria
  10. 10.Trinity CollegeDublinIreland
  11. 11.TokyoJapan
  12. 12.University of WisconsinMadisonUSA
  13. 13.Ohio State UniversityColumbusUSA
  14. 14.Normal UniversityTapaiTaiwan, Republic of China
  15. 15.Augusta CollegeAugustUSA
  16. 16.University of ChicagoChicagoUSA
  17. 17.Leamington SpaEngland
  18. 18.Minneapolis Community CollegeMinneapolisUSA
  19. 19.University of VermontBurlingtonUSA
  20. 20.Roehampton InstituteLondonEngland
  21. 21.Ain Shams UniversityCairoEgypt

Personalised recommendations