Advertisement

Abstract

The phase diagram of the V-Ga system is refined by microstructural and thermal analysis, x-ray diffraction, measurements of microhardness and critical superconducting temperature, and also the determination of the chemical composition of certain phases by x-ray spectral microanalysis. The results are compared with published data. The effect of chemical composition and heat treatment on the superconducting temperature of the 0 phase (Cr3Si structure) is studied. The transformation temperature of the 3 phase is affected by the degree of ordering of its crystal structure and the degree of uniformity of the alloys. The maximum transformation temperature occurs for 26 at.% Ga. Gallium reduces the critical superconducting temperature of vanadium.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    R. A. Wood, V. B. Compton, B. T. Matthias, and E. Corenzwit, Acta Cryst., 11: 9 (1958).Google Scholar
  2. 2.
    G. F. Hardy and J. K. Hülm, Phys. Rev., 89: 884 (1953).CrossRefGoogle Scholar
  3. 3.
    E. A. Wood, V. B. Compton, B. T. Matthias, and E. C. Corenzwit, Acta Cryst., 11: 604 (1958).CrossRefGoogle Scholar
  4. 4.
    J. H. Wernick, F. J. Morin, F. S. L. Hsu, D. Dorsi, J. R. Maita, and J. E. Kunzler, High Magnetic Fields, Technology Press, Cambridge, Mass. (1962), p. 609.Google Scholar
  5. 5.
    E. M. Savitskii, P. I. Kripyakevich, V. V. Baron, and Yu. V. Efimov, Zh. Neorg. Khim., 9 (5): 1155 (1964).Google Scholar
  6. 6.
    K. Schubert, H. G. Meissner, W. Rossteutscher, and E. Stolz, Naturwiss., 49 (3): 57 (1962).CrossRefGoogle Scholar
  7. 7.
    V. M. Pan, Collection “Structure of Metallic Alloys” [in Russian], Izd. AN Ukr.SSR, Kiev, p. 120.Google Scholar
  8. 8.
    J. H. N. Van Vucht, H. A. C. M. Brüning, H. C. Dunkersloot, and A. H. Gomes de Mesquita, Philips Res. Reports, 19: 407 (1964).Google Scholar
  9. 9.
    H. Go Meissner and K. Schubert, Z. Metallkunde, 56 (7): 475 (1965).Google Scholar
  10. 10.
    J. H. N. Van Vucht, H. A. C. M. Brüning, andH. C. Donkersloot, Phys. Lett., 47 (5): 297 (1963).Google Scholar
  11. 11.
    W. Jeitschko, H. Nowotny, and F. Benesovsky, Mh. Chemie, 95 (1): 156 (1964).Google Scholar
  12. 12.
    W. Jeitschko, H. Nowotny, and F. Benesovsky, Mh. Chemie, 95 (4–5): 1212 (1964).Google Scholar
  13. 13.
    H. J. Levinstein, J. H. Wernick, and C. D. Capio, J. Phys. Chem. Solids, 26 (7): 1111 (1965).CrossRefGoogle Scholar
  14. 14.
    K. Schubert, K. Frank, R. Gohle, A. Maldonado, H. G. Meissner, A. Ramen, and W. Rossteutscher, Naturwiss., 50: 41 (1963).CrossRefGoogle Scholar
  15. 15.
    E. M. Savitskii, P. I. Kripyakevich, V. V. Baron, and Yu. V. Efimov, Izv. Akad. Nauk SSSR, Neorg. Mat., 3 (1): 45 (1967).Google Scholar
  16. 16.
    M. A. Filyand and E. I. Semenova, Properties of Rare Elements [in Russian], Izd. “Metallurgiya” (1964).Google Scholar
  17. 17.
    N. E. Alekseevskii, N. V. Ageev, and V. F. Shamrai, Izv. Akad. Nauk SSSR, Neorg. Mat., 2 (12): 2156 (1966).Google Scholar

Copyright information

© Consultants Bureau, New York 1970

Authors and Affiliations

  • Yu. V. Efimov
  • V. V. Baron
  • E. M. Savitskii

There are no affiliations available

Personalised recommendations