The third critical field of a system comprising a thin superconducting film deposited on the flat surface of a massive superconductor is calculated. It is considered that the film differs from the substrate simply in respect of the mean free path of the electrons. Two limiting cases are considered: those of a thin and a thick film respectively. A qualitative explanation is given for the experimentally-observed dependence of the third critical field of a superconductor on the mechanical and heat treatment of the surface.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    D. Saint-James and P. G. Gennes, Phys. Lett., 7: 306 (1963).CrossRefGoogle Scholar
  2. 2.
    C. F. Hempstead and J. B. Kim, Phys. Rev. Lett., 12: 145 (1964).CrossRefGoogle Scholar
  3. 3.
    S. Gygax, J. L. Olsen, and R. H. Kropschot, Phys. Lett., 8: 228 (1964).CrossRefGoogle Scholar
  4. 4.
    P. R. Doidge and Kwan Sik-Hung, Phys. Lett., 12: 82 (1964).CrossRefGoogle Scholar
  5. 5.
    L. P. Gor’kov, Zh. Éksp. Teor. Fiz., 37: 1407 (1959).Google Scholar
  6. 6.
    V. L. Ginzburg and L. D. Landau, Zh. Éksp. Teor. Fiz., 20: 1064 (1950).Google Scholar
  7. 7.
    R. O. Zaitsev, Zh. Éksp. Teor. Fiz., 50: 1055 (1966).Google Scholar
  8. 8.
    A. A. Abrikosov, Zh. Éksp. Teor. Fiz., 47: 720 (1964).Google Scholar
  9. 9.
    S. J. Williamson and J. K. Furdyana, Phys. Lett., 21: 376 (1966).CrossRefGoogle Scholar

Copyright information

© Consultants Bureau, New York 1970

Authors and Affiliations

  • V. V. Shmidt

There are no affiliations available

Personalised recommendations