The effect of interstitial impurities and elements of Groups IVA, VA, and VIA (Zr, Ti, Hf, V, Ta, Cr, W, Mo) on the superconducting properties of niobium is considered. The chief interstitial impurity reducing the value of TK is oxygen. It is concluded that IK and \( {H_{{C_2}}} \) increase with oxygen content. The TK of niobium changes on alloying with elements of Groups NA, VA, and VIA. There is a considerable rise in the critical current density of Nb—alloys after introducing oxygen and subjecting to heat treatment; this is attributed to the more effective precipitation of a new phase from the solid solution in the presence of oxygen.


Critical Current Density Critical Field Superconducting Property Metallic Impurity Gaseous Impurity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    E. M. Savitskii and V. V. Baron, Metallurgiya i Gornoe Delo, No. 5, p. 1 (1963).Google Scholar
  2. 2.
    M. A. Filyand and E. I. Semenova, Properties of Rare Elements [in Russian], Izd. “Metallurgiya” (1964), p. 336.Google Scholar
  3. 3.
    E. M. Savitskii, G. S. Burkhanov, and Ch, V. Kopetskii, Izv, Akad. Nauk SSSR, No. 6,p. 12 (1963).Google Scholar
  4. 4.
    W. De Sorbo, Phys, Rev., 130 (6): 2177 (1963).CrossRefGoogle Scholar
  5. 5.
    W. De Sorbo, Phys, Rev., 132 (1): 107 (1963).CrossRefGoogle Scholar
  6. 6.
    W. De Sorbo, Phys. Rev., 134 (5A): 1190 (1964).CrossRefGoogle Scholar
  7. 7.
    W. De Sorbo, Phys. Rev„ 135 (5A): 1119 (1964).CrossRefGoogle Scholar
  8. 8.
    B. T, Matthias, T, H, Geballe, and V, B. Compton, Rev. Mod. Phys., 35 (1):1 (1963)Google Scholar
  9. 9.
    J, K, Hulm and R. D, Blaugher, Phys, Rev„ 123 (5):1569 (1963)Google Scholar
  10. 10.
    C, S. Tedmon, R. M. Rose, and J. Wulff, J, Appl, Phys„ 36 (1): 164 (1965).Google Scholar
  11. 11.
    B. A. Rogers and D. F. Atkins, J. Metals, 7 (9): 1034 (1955).Google Scholar
  12. 12.
    Yu. F. Bychkov, A. N. Rozanov, and D. M. Skorov, Atomnaya Énergiya., 2 (2):146 (1957). 13Google Scholar
  13. 13.
    R, F. Domogala and D, I. McPhersoi, J. Metals, 2 (5): 619 (1956).Google Scholar
  14. 14.
    C. W. Berghout, Phys, Letters, No, 1, p. 292 (1962).CrossRefGoogle Scholar
  15. 15.
    H, Richter, P. Wincierz, K. Anderko, and U. Zwiker, J. Less-Com. Metals, 4 (3):252 (1962)Google Scholar
  16. 16.
    T. D. Berlincourt, R. R. Hake, and D. H. Leslie, Phys. Rev. Lett., 6 (12): 671 (1961).CrossRefGoogle Scholar
  17. 17.
    B. T. Matthias, Phys. Rev., 92 (4): 874 (1953).CrossRefGoogle Scholar
  18. 18.
    P. R. Aron and H. C. Hitchcock, J. Appl, Phys., 33 (7): 2242 (1962).CrossRefGoogle Scholar
  19. 19.
    J. Wong, Superconducting Materials [Russian translation], “Mir” (1965), p. 138.Google Scholar
  20. 20.
    V, C. Marcotte, W. L. Larsen, and D, E. Williams, J. Less-Conn. Metals, 7 (5): 373 (1964).CrossRefGoogle Scholar
  21. 21.
    J, O. Betterton, G. D, Kneip, D. S. Easton, and J. O. Scarbrough, Superconducting Materials [Russian translation], “Mir” (1965), p, 102.Google Scholar
  22. 22.
    R. M. Rose and J. Wulff, J. Appl. Phys., 33 (7): 2394 (1962).CrossRefGoogle Scholar
  23. 23.
    L, F, Myzenkova, V, V. Baron, and E. M. Savitskii, Metallography and Physics of Superconductors [in Russian], Izd. “Nauka” (1965), p. 39.Google Scholar
  24. 24.
    G. B, Kurganov and V, R. Karasik, Metallography and Physics of Superconductors [in Russian], Izd. “Nauka” (1965), p. 118.Google Scholar

Copyright information

© Consultants Bureau, New York 1970

Authors and Affiliations

  • L. F. Myzenkova
  • V. V. Baron
  • E. M. Savitskii

There are no affiliations available

Personalised recommendations