Advertisement

Kinetic Study of the Electric Field-Induced Cholestericnematic Transition in Liquid Crystal Films: 1. Relaxation to the Cholesteric State

  • J. J. Wysocki
  • J. E. Adams
  • D. J. Olechna

Abstract

Relaxation of cholesteric liquid crystals from the electric-field-induced nematic state back to the cholesteric state was studied by measuring the transmission of polarized light through the sample. Variables included time, temperature, wavelength and bias. The relaxation transient was found to include optical rotation which corresponded to the optical sense of the material. The rotatory dispersion furthermore was correctly specified by deVries’ formula. The results point out the significance of the basic cholesteric parameters of pitch and sense. An attempt is made to relate the relaxation phenomena to the molecular system.

Keywords

Liquid Crystal Polar Angle Polar Plot Cholesteric Liquid Crystal Threshold Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. J. Wysocki, J. E. Adams, and W. Haas, Phys. Rev. Letters 20, 1024, (1968).CrossRefGoogle Scholar
  2. 2.
    A cholesteric-nematic phase transition can also be induced by magnetic fields. See, for example, E. Sackmann, S. Meiboom and L. Snyder, J. Am. Chem. Soc. 89, 5981 (1967).Google Scholar
  3. 3.
    J. J. Wysocki, J. E. Adams, and W. Haas, “Electric-Field Induced Phase Change In Cholesteric Liquid Crystals”, in Proc. of 2nd International Conf. on Liquid Crystals; Kent, Ohio; 12–16 Aug. 1968 (to be published in Molecular Crystals).Google Scholar
  4. 4.
    H. Baessler and M. Labes, Phys. Rev. Letters 21, 1791 (1968).CrossRefGoogle Scholar
  5. 5.
    F. Frank, Disc. Faraday Soc. 25, 19 (1958).CrossRefGoogle Scholar
  6. 6.
    P. de Gennes, Solid State Comm. 6, 163 (1968).CrossRefGoogle Scholar
  7. 7.
    R. Meyer, Appl. Phys. Letters 12, 281 (1968).Google Scholar
  8. 8.
    G. Durand, et.al., Phys. Rev. Letters 22, 227 (1969).CrossRefGoogle Scholar
  9. 9.
    J. J. Wysocki and J. E. Adams, Bull. Am. Phys. Soc. 14, 739 (1969).Google Scholar
  10. 10.
    J. E. Adams, W. Haas and J. J. Wysocki, Bull. Am. Phys. Soc. 14, 739 (1969).Google Scholar
  11. 11.
    J. E. Adams, W. Haas and J. J. Wysocki, Phys. Rev. Letters 22, 921 (1969).CrossRefGoogle Scholar
  12. 12.
    W. Haas and J. E. Adams, J. Appl. Opt. 7, 1203 (1968).CrossRefGoogle Scholar
  13. 13.
    J. E. Adams, W. Haas, and J. J. Wysocki, J. Chem. Phys. 50, 2458 (1969).CrossRefGoogle Scholar
  14. 14.
    H. deVries, Acta Cryst. 4, 219 (1951).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • J. J. Wysocki
    • 1
  • J. E. Adams
    • 1
  • D. J. Olechna
    • 1
  1. 1.Xerox Research LaboratoriesRochesterUSA

Personalised recommendations