Conditions of Stability for Liquid-Crystalline Phospholipid Membranes

  • Demetrios Papahadjopoulos
  • Shinpei Ohki


Four different classes of phospholipids, extracted and purified from natural sources, have been studied as model membranes in the fors of 1) multilamellar, liquid-crystalline particles; 2) unilamellar vesicles produced 3y sonication; and 3) thin films of approximately bimolecular thickness (black films). The study centers around the importance of the polar groups and the aqueous environment on the stability and permeability properties of the resulting membranes. All the phospholipids, studied at physiological ionic strength (0.1M) and ambient temperature (22°–30°C), produce stable membranes, exhibiting high electrical resistance and low permeability to ions. However, differences in the chemical composition of the head-groups of phospholipids, ionic strength, ion composition or pH of the aqueous phase, produce substantial differences in ion self-diffusion rates and electrical resistance. These observations suggest two types of dynamic conformational changes of the orientation of the phospholipid molecules. One: a micelle-bilayer transformation as a result of charge-charge interaction on the same plane, and second: an “inversion” of the orientation of molecules or clusters of molecules resulting from asymmetricity of the surface energy between the two planes of a bilayer.

Submitted to the A.C.S. as an invited participation to the “Second Symposium on Ordered Fluids and Liquid Crystals” to be held at the meeting of the American Chemical Society, New York, September 7–12, 1969.


Phosphatidic Acid Phosphatidic Acid Acidic Phospholipid Cylindrical Micelle Black Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ABRAMSON, M.B., KATZMAN, R. and GREGOR, H.P., J. Biol. Chem., 239, 70 (1964).Google Scholar
  2. 2.
    ABRAMSON, M.B., KATZMAN, R., GREGOR, H.P. and CURCI, R., Biochemistry, 5, 2207 (1966).CrossRefGoogle Scholar
  3. 3.
    ALBUQUERQUE, E.X. and THESLEFF, S., J. of Physiol., 190, 123 (1967).Google Scholar
  4. 4.
    ALLEN, B.T., CHAPMAN, D. and SALSBURY, N.J., Nature, 212, 282 (1966).CrossRefGoogle Scholar
  5. 5.
    ANDERSON, P.J. and PETHICA, B.A., in Biochemical Problems of Lipids, (Eds. G. Popjak and E. le Breton ). Butterworth, London 1956, p. 24.Google Scholar
  6. 6.
    ANDREOLI, T.E., BANGHAM, J.A., and TOSTESON, D.C., J. General Physiol., 50, 1729 (1967).CrossRefGoogle Scholar
  7. 7.
    BANGHAM, A.D., Advances in Lipid Research (Eds. D. Kritchevsky, R. Paoletti) Acad. Press, 1, 65 (1963).Google Scholar
  8. 8.
    BANGHAM, A.D., in Progress in Biophys. & Molecular Biology (Eds. J.A.V. Butler, D. Noble) Pergamon Press, Oxford, p. 29 (1968)Google Scholar
  9. 9.
    BANGHAM, A.D. and PAPAHADJOPOULOS, D., Biochim. Biophys. Acta, 126, 181 (1966).CrossRefGoogle Scholar
  10. 10.
    BANGHAM, A.D., STANDISH, M.M., and MILLER, N., Nature, 208, 1295 (1965).CrossRefGoogle Scholar
  11. 11.
    BANGHAM, A.D., STANDISH, and WATKINS, J.C., J. Mol. Biol., 13, 238 (1965).CrossRefGoogle Scholar
  12. 12.
    BEAR, R.S., PALMER, K.J., SCHMITT, F.O., J. Cellular Comp. Physiol., 17, 355 (1941).Google Scholar
  13. 13.
    CHAPMAN, D., The Structure of Lipids, Methuen and Co., Ltd., London (1965).Google Scholar
  14. 14.
    CHAPMAN, D. and FLUCK, D.J., J. Cell. Biol., 30, 1 (1966).CrossRefGoogle Scholar
  15. 15.
    CHAPMAN, D., WILLIAMS, R.M. and LANDBROOKE, B.D., Chem. Phys. Lipids, 1, 445 (1967).CrossRefGoogle Scholar
  16. 16.
    DANIELLI, J.F., in Molecular Associations in Biology, Academic Press, N.Y., p. 529 (1968).Google Scholar
  17. 17.
    DAWSON, R.M.C., Biochem. J., 102, 205 (1967).Google Scholar
  18. 18.
    DE HAAS, G.H., BUNSEN, P.P.M., and VAN DEENEN, L.L.M., Biochim. Biophys. Acta, 116, 114 (1966).Google Scholar
  19. 19.
    DERVICHIAN, D.G., in Progress in Biophysics (Eds. J.A.V. Butler, H.E. Huxley) Pergamon Press, 14, 263 (1964).Google Scholar
  20. 20.
    HANAI, T., HAYDON, D.A., TAYLOR, J., J. Theor. Biol., 9, 433 (1965).CrossRefGoogle Scholar
  21. 21.
    HILLE, B., J. General Physiol. 51, 221 (1968).CrossRefGoogle Scholar
  22. 22.
    HUANG, C., WHEELDON, L., and THOMPSON, T., J. Mol. Biol., 8, 148 (1964).CrossRefGoogle Scholar
  23. 23.
    KIMIZUKA, H., NAKAHARA, T., VEJO, H., and YAMAUCHI, A., Biochim. Biophys. Acta, 137, 549 (1967).Google Scholar
  24. 24.
    LAUGER, P., LESSLAUER,W., MARTI, E., and RICHTER, J., J. Biochim. Biophys. Acta, 135, 20 (1967).CrossRefGoogle Scholar
  25. 25.
    LESSLAUER, W., RICHTER, J., and LAUGER, P., Nature, 213, 1224 (1967)CrossRefGoogle Scholar
  26. 26.
    LUZZATI, V., in Biological Membranes (Edit. by D. Chapman) Academic Press, p. 71 (1968).Google Scholar
  27. 27.
    LUZZATI, V., GULIK-KRZYWICKI, T. and TARDIEU, A., Nature, 218, 1031 (1968).CrossRefGoogle Scholar
  28. 28.
    LUZZATI, V., and HUSSON, F., J. Cell. Biol., 12, 207 (1962).CrossRefGoogle Scholar
  29. 29.
    MAAS, J.W., and COLBURN, R.S., Nature, 208, 41 (1965).CrossRefGoogle Scholar
  30. 30.
    MUELLER,P., RUDIN, D.O., TIEN, H.T., and WESCOTT, W.C., Nature, 194, 979 (1962).Google Scholar
  31. 31.
    OHKI, S., J. Coll. Interf. Science, 30, 413 (1969).CrossRefGoogle Scholar
  32. 32.
    OHKI, S., Biophysical J. (in press).Google Scholar
  33. 33.
    OHKI, S., J. Coll. Interf. Science (in press).Google Scholar
  34. 34.
    OHKI, S. and GOLDUP, A., Nature, 217, 458 (1968).CrossRefGoogle Scholar
  35. 35.
    OHKI, S., in D. Kursunoglu and A. Perlmutter, Eds: Physical Principles of Biological Membranes, Gordon & Breach, Science Pubi. Inc. (in press).Google Scholar
  36. 36.
    PAGANO, R. and THOMPSON, T.E., J. Mol. Biol., 38, 41 (1968).CrossRefGoogle Scholar
  37. 37.
    PAPAHADJOPOULOS, D., Biochim. Biophys. Acta, 163, 240 (1968).CrossRefGoogle Scholar
  38. 38.
    PAPAHADJOPOULOS, D. and BANGHAM, A.D., Biochim. Biophys. Acta, 126, 185 (1966).CrossRefGoogle Scholar
  39. 39.
    PAPAHADJOPOULOS, D. and MILLER, N., Biochim. Biophys. Acta, 135, 624 (1967).CrossRefGoogle Scholar
  40. 40.
    PAPAHADJOPOULOS, D. and OHKI, S., Science 164, 1075 (1969).CrossRefGoogle Scholar
  41. 41.
    PAPAHADJOPOULOS, D. and OHKI, S., J. Amer. Oil Chem. Soc. Symposium on Model Membranes, San Francisco, April 1969, (in press).Google Scholar
  42. 42.
    PAPAHADJOPOULOS, D. and OHKI, S., Symposium on Surface Chemistry of Biological Systems, A.C.S. Meeting, Sept., 1969. M. Blank, Ed., in Advances in Experimental Medicine and Biology, Plenum Press (in press).Google Scholar
  43. 43.
    PAPAHADJOPOULOS, D. and WATKINS, J.C., Biochim. Biophys. Acta, 135, 639 (1967).CrossRefGoogle Scholar
  44. 44.
    PAPAHADJOPOULOS, D.,and WEISS, L., Biochim. Biophys. Acta, (in press).Google Scholar
  45. 45.
    PARSEGIAN, V.A., Science, 156, 939 (1967).CrossRefGoogle Scholar
  46. 46.
    ROJAS, E. and TOBIAS, J.M., Biochim. Biophys. Acta, 94, 394 (1965).CrossRefGoogle Scholar
  47. 47.
    SHAH, D.0,, SCHULMAN, J.H., J. Lipid Res., 8, 227 (1967).Google Scholar
  48. 48.
    SHAH, J,, PAPAHADJOPOULOS, D. and WENNER, C., (manuscript in preparation).Google Scholar
  49. 49.
    TASAKI, I., WATANABE, A. and LERMAN, L., Amer. J. Physiol., 213, 1465 (1967).Google Scholar
  50. 50.
    TIEN, H.T. and DIANA, A,L., Chem. Phys. Lipids, 2, 55 (1968).CrossRefGoogle Scholar
  51. 51.
    TIEN, H.T. and DIANA, A.L., J. Coll. Interf. Science, 24, 287 (1967).Google Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • Demetrios Papahadjopoulos
    • 1
    • 2
  • Shinpei Ohki
    • 1
    • 2
  1. 1.Roswell Park Memorial InstituteBuffaloUSA
  2. 2.State University of New York at BuffaloNew YorkUSA

Personalised recommendations