Singular Solutions in Liquid Crystal Theory

  • J. L. Ericksen


Not infrequently, orientation patterns in liquid crystals are marred by imperfections, so it seems pertinent to attempt some general theoretical treatment of these, within the framework of continuum theory. We here present some thoughts concerning static theory for these.


Liquid Crysta1 Singular Point Singular Solution Plane Solution Orientation Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. C. Frank, On the theory of liquid crystals, Discuss. Faraday Soc. 25, 19–28 (1958).CrossRefGoogle Scholar
  2. 2.
    J. L. Ericksen, General solutions in the hydrostatic theory of liquid crystals, Trans. Soc. Rheol. 11, 5–14 (1967).CrossRefGoogle Scholar
  3. 3.
    J. L. Ericksen, Propagation of weak waves in liquid crystals of nematic type, J. Acoust. Soc. Am. 44, 444–446 (1968).CrossRefGoogle Scholar
  4. 4.
    J. L. Ericksen, Continuum theory of liquid crystals, Applied Mech. Rev. 20, 1029–1032 (1967).Google Scholar
  5. 5.
    C. W. Oseen, The theory of liquid crystals, Trans. Faraday Soc. 29, 883–899 (1933).CrossRefGoogle Scholar
  6. 6.
    O. Lehmann, Flüssige Kristalle und ihr scheinbares Leben, Verlag von Leopold Voss, Leipzig 1921.Google Scholar
  7. 7.
    J. L. Ericksen, Hydrostatic theory of liquid crystals, Arch. Rat’l. Mech. Anal. 9, 371–378 (1962).Google Scholar
  8. 8.
    J. L. Ericksen, Inequalities in liquid crystal theory, Physics Fluids 9, 1205–1207 (1966).CrossRefGoogle Scholar
  9. 9.
    F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Rat’l. Mech. Anal. 28, 265–283 (1968).Google Scholar
  10. 10.
    P.-G. de Gennes, Fluctuations d’orientation et diffusion Rayleigh dans un cristal nématique, Comptes Rendus 266 (B), 15–17 (1968).Google Scholar
  11. 11.
    J. L. Ericksen, Nilpotent energies in liquid crystal theory, Arch. Rat’l. Mech. Anal. 10, 189–196 (1962).CrossRefGoogle Scholar
  12. 12.
    G. Friedel, Les états mésomorphes de la matière, Ann. de Phys. 18 (9), 273–474 (1922).Google Scholar
  13. 13.
    G. H. Brown and W. G. Shaw, The mesomorphic state: liquid crystals, Chem. Rev. 57, 1049–1157 (1957).CrossRefGoogle Scholar
  14. 14.
    C. M. Dafermos, Disinclinations in liquid crystals, forthcoming.Google Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • J. L. Ericksen
    • 1
  1. 1.Mechanics DepartmentThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations