Advertisement

Boron Nitride Fiber Synthesis from Boric Oxide Precursors

  • Arthur E. Lindemanis
Part of the Materials Science Research book series (MSR, volume 17)

Abstract

The effective application of boron nitride fibers as battery separators or as high modulus fibers requires improving the economics significantly, particularly in the conversion of B2O3 fibres to BN with ammonia. The kinetics were studied as a function of fiber diameter and temperature and found to fit a shrinking core model. Low melting point surface phases and a high temperature B-O-N phase also influence the bulk fiber nit riding process.

Keywords

Boron Nitride Fiber Diameter Nitriding Process Shrink Core Model High Modulus Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Development of Boron Nitride Felt Separators for Lithium/Metal Sulfide Batteries, Argonne National Laboratories Contract No. 31-109-38-5747 with Kennecott Corp., 1980.Google Scholar
  2. 2.
    R. B. Swaroop, J. E. Battles, and R. S. Hamilton, 6th Inter- American Conf. on Mat. Tech., San Francisco, CA, August 1980.Google Scholar
  3. 3.
    Development of High Strength, High Modulus Continuous Boron Nitride Fiber, Naval Surface Weapons Center/NASA Langley Contract N60921-82-C0015 with Kennecott Corp., 1981.Google Scholar
  4. 4.
    Priv. communication, F. Tompkins, Carborundum Co., Niagara Falls, NY.Google Scholar
  5. 5.
    J. Economy and R. V. Anderson, Inorg. Chem., 5 [6], 989–92 (1966).CrossRefGoogle Scholar
  6. 6.
    J. Economy, Chem. Tech., 240–6 (April 1980).Google Scholar
  7. 7.
    J. Economy, JNANAF Thermochemical Tables, 2nd Ed., U.S. National Bureau of Standards, Washington, D.C., 1972.Google Scholar
  8. 8.
    M. C. Branch and R. F. Sawyer, AFOSR Scientific Report AFOSR-TR-72-0200, June 1971.Google Scholar
  9. 9.
    D. L. Johnson, Disser. Abstr., B27, 1898 (1966).Google Scholar
  10. 10.
    H. Carube, Trans. Steel Inst. Jap., 14 [6], 404–10 (1974).Google Scholar
  11. 11.
    N. Kelvin, (Ph.D. Thesis), Yale University, 1969.Google Scholar
  12. 12.
    J. Voelter and M. Schoen, Z. Anorg. Allgem. Chem., 322, 213–14 (1963).Google Scholar
  13. 13.
    J. Economy and R. Anderson, U.S. Patent No. 3,429,722 (1969) and U.S. Patent No. 3,62,780 (1971).Google Scholar
  14. 14.
    J. Szekely, J. W. Evans, and H. Y. Sohu, Gas-Solid Reactions, Academic Press, NY, 1976.Google Scholar
  15. 15.
    J. Thomas, N. E. Weston, and T. E. O’Connor, J. Am. Chem. Soc., 84, 4619–22 (1962).CrossRefGoogle Scholar
  16. 16.
    C. N. Satterfield and W. G. Margetts, A.I.Ch.E. J., 17, 295–99 (1971).CrossRefGoogle Scholar
  17. 17.
    T. K. Sherwood, R. L. Pigford, and C. R. Wilke, Mass Transfer, McGraw-Hill, NY, 1975.Google Scholar
  18. 18.
    N. J. Croissant and G. Garanud, J. Therm. Anal., 5 [5–6], 577–97 (1973).Google Scholar
  19. 19.
    J. Haladjain and G. Carpeni, Bull. Soc. Chim. France, 1679–82 (1956).Google Scholar
  20. 20.
    M. J. Lecomte, C. R. Acad. Sc. Paris Ser. A, B, 264B [3], 235–38 (1967).Google Scholar
  21. 21.
    V. V. Urusov, Doklady Akad. Nauk vs. S.S.R., 116, 97–100 (1957).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Arthur E. Lindemanis
    • 1
  1. 1.Combustion Engineering, Inc.StamfordUSA

Personalised recommendations