Skip to main content

Part of the book series: Materials Science Research ((MSR,volume 17))

  • 530 Accesses

Abstract

More than six decades have passed since Bridgman and co-workers established the exciting field of high pressure science and technology. Since that time research in this area has been primarily dominated by physicists, geologists and more recently by chemists. Except for the synthesis of diamond in 1954, ceramists in general have not taken advantage of the role very high pressure can play as an important thermodynamic parameter in ceramic processing. In this paper the science and technology of very high pressure as a long overdue but emerging process in the development of high technology ceramics is discussed and examples given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. S. D. Hamann, Physico-Chemical Effects of Pressure, Butterworths, London, 1957.

    Google Scholar 

  2. F. W. Vahldiek and C. T. Lynch, pp. 637–64 in Sintering and Related Phenomena, edited by G. C. Kuczynski, N. A. Hooton, and C. F. Gibbon, Gordon and Breach, NY, 1967.

    Google Scholar 

  3. J. S. Nadeau, Bull. Amer. Ceram. Soc., 52 [2], 170–74 (1973).

    CAS  Google Scholar 

  4. A. Sawaoka, K. Kondo, N. Hashimoto, and S. Saito, pp. 339–44 in Factors in Densification and Sintering of Oxide and Non-oxide Ceramics, edited by S. Somiya and S. Saito, Association for Science Documents Information c/o Tokyo Institute of Technology, Tokyo, Japan, 1979.

    Google Scholar 

  5. Y. Ishitobi, M. Shimada, and M. Koizumi, pp. 142–51 in ref. 4.

    Google Scholar 

  6. H. Katzman and W. F. Libby, Science, 172, 1132–34 (1971).

    Article  CAS  Google Scholar 

  7. M. Akaishi et al., pp. 320–27 in ref. 4.

    Google Scholar 

  8. S. Saito, pp. 1–18 in ref. 4.

    Google Scholar 

  9. O. Fukunaga et al., pp. 328–38 in ref. 4.

    Google Scholar 

  10. J. Chenavas et al., J. Solid State Chem., 6, 1–15 (1973).

    Article  CAS  Google Scholar 

  11. H. T. Hall, J. Wash. Acad. Sci., 47, [9], 300–04 (1957).

    CAS  Google Scholar 

  12. R. Kern and A. Weisbrod, Thermodynamics for Geologists, Freeman, Cooper and Company, San Francisco, CA, 1967.

    Google Scholar 

  13. C. M. Scarfe, Miner. Sei. Eng., 5, [4], 287–94 (1973).

    CAS  Google Scholar 

  14. J. C. Joubert and J. Chenavas, pp. 463–511 in Treatise on Solid State Chemistry, Vol. 5, Changes of State, edited by N. B. Hannay, Plenum Press, NY, 1975.

    Google Scholar 

  15. E. D. Whitney and R. F. Giese, Inorg. Chem., 10, [5], 1090–91 (1971).

    Article  CAS  Google Scholar 

  16. R. C. deVries and J. F. Flei, Mat. Res. Bull., 4, 433 (1969).

    Google Scholar 

  17. S. D. Hamann, J. Phys. Chem., 67 [10], 2233–35 (1963).

    Article  CAS  Google Scholar 

  18. O. F. Tuttle and J. L. England, Bull. Geol. Soc. Am., 66, 149–52 (1955).

    Article  CAS  Google Scholar 

  19. E. C. Franklin and C. A. Kraus, Amer. Chem. J., 21, 8 (1899).

    Google Scholar 

  20. A. S. Berezhnoi, Ogneupory, 3–4, 229–32 (1970).

    Google Scholar 

  21. J. R. Partington, pp. 238–42 in An Advanced Treatise on Physical Chemistry, Vol. III, The Properties of Solids, Longmans, Green and Co., London, England, 1952.

    Google Scholar 

  22. J. N. Plendl and P. J. Gielisse, Phys. Rev., 125 [3], 828–32 (1962)

    Article  CAS  Google Scholar 

  23. J. N. Plendl and P. J. Gielisse Zeit, fur Krist., 118 [5/6], 405–21 (1963).

    Google Scholar 

  24. C. E. Wooddell, Trans. Electrochem. Soc., 68, 111–30 (1935).

    Article  Google Scholar 

  25. R. H. Wentorf, Jr., J. Phys. Chem., 63, 1934–40 (1959).

    Article  CAS  Google Scholar 

  26. E. Mooser and W. B. Pearson, Acta Cryst., 12, 1015–22 (1959).

    Article  CAS  Google Scholar 

  27. H. T. Hall, Science, 148 [3675], 1331–33 (1965).

    Article  CAS  Google Scholar 

  28. H. T. Hall, pp. 1–38 in Progress in Inorganic Chemistry, Vol. 7, edited by F. A. Cotton, Interscience Publishers, NY, 1966.

    Chapter  Google Scholar 

  29. H. T. Hall and L. A. Compton, Inorg. Chem., 4, 1213–16 (1965).

    Article  CAS  Google Scholar 

  30. T. K. Gupta, pp. 877–89 in Fracture Mechanics of Ceramics, Vol. 4, edited by R. C. Bradt, D. P. H. Hasselman, and F. F. Lange, Plenum press, NY, 1978.

    Google Scholar 

  31. P. L. Pratt, J. Met. Sci., 14, [8–9], 363–73 (1980).

    CAS  Google Scholar 

  32. R. Stevens, Trans. J. Brit. Ceram. Soc., 80 [3], 81–5 (1981).

    CAS  Google Scholar 

  33. F. F. Lange, J. Mat. Sci., 17, 235–39 (1982).

    Article  CAS  Google Scholar 

  34. E. D. Whitney, J. Amer. Ceram. Soc., 45 [12], 612–13 (1962).

    Article  CAS  Google Scholar 

  35. H. Arashi and M. Ishigame, Phys. Stat. Sol. A, 71 [2], 313–21 (1982).

    Article  CAS  Google Scholar 

  36. N. A. Bendeliani, S. V. Popova, and L. F. Vereshchagin, Geokhimiya, 6, 677–83 (1967)

    CAS  Google Scholar 

  37. N. A. Bendeliani, S. V. Popova, and L. F. Vereshchagin, Geochem. Int., 4 [3], 557 (1967).

    Google Scholar 

  38. A. S. Berezhnoi, Dopavidi Akad. Nauk Ukr. SSSR, 1, 65–8 (1962).

    Google Scholar 

  39. G. Bocquillon and C. Susse, Rev. Int. High Temp, and Refract., 6 [4], 263–66 (1969).

    CAS  Google Scholar 

  40. G. L. Kulcinski, J. Amer. Ceram. Soc., 51 [10], 582–84 (1968).

    Article  CAS  Google Scholar 

  41. G. L. Kulcinski and C. W. Maynard, J. Appl. Phys., 37 [9], 3519–27 (1966).

    Article  CAS  Google Scholar 

  42. L. M. Lityagina et al., Soviet Phys. Solid State, 20 [11], 3475–77 (1978).

    CAS  Google Scholar 

  43. Lin-Gun Liu, J. Phys. Chem. Solids, 41 [4], 331–34 (1980).

    Article  CAS  Google Scholar 

  44. E. D. Whitney, J. Amer. Ceram. Soc., 45 [12], 612–13 (1962).

    Article  CAS  Google Scholar 

  45. E. D. Whitney, J. Electrochem. Soc., 112 [1], 91–4 (1965).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Whitney, E.D. (1984). High Pressure Processing of High Technology Ceramics. In: Davis, R.F., Palmour, H., Porter, R.L. (eds) Emergent Process Methods for High-Technology Ceramics. Materials Science Research, vol 17. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8205-8_55

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8205-8_55

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8207-2

  • Online ISBN: 978-1-4684-8205-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics