Advertisement

Densification Kinetics of Shock-Activated Nitrides

  • E. K. Beauchamp
  • R. E. Loehman
  • R. A. Graham
  • B. Morosin
  • E. L. Venturini
Part of the Materials Science Research book series (MSR, volume 17)

Abstract

In 1966, Bergmann and Barrington1 reported that, for a variety of oxide and carbide powders, improvement in the sintering behavior was obtained when the powders were subjected to explosive shock treatment. They concluded that, for the carbides, the improvement resulted primarily from the reduction in particle size, but for the oxides, the change was associated with a substantial increase in the internal defect population. Subsequent transmission electron microscopy showed high concentrations of dislocations in the shock-modified powders.2 Later work has shown that very high concentrations of point defects are generated in shock-loaded rutile powders.3

Keywords

Electron Spin Resonance Silicon Nitride Aluminum Nitride Shock Treatment Shock Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. R. Bergmann and J. Barrington, J. Am. Ceram. Soc., 49, 502–07 (1966).CrossRefGoogle Scholar
  2. 2.
    R. W. Heckel and J. L. Youngblood, J. Am. Ceram. Soc., 51, 398–401 (1968).CrossRefGoogle Scholar
  3. 3.
    E. L. Venturini, B. Morosin, and R. A. Graham, p. 72 in Shock Waves in Condensed Matter, 1981, Menlo Park, A.I.P. Conf. Proc. #78, edited by W. J. Nellis, L. Seaman, and R. A. Graham, Am. Inst, of Physics, 1982.Google Scholar
  4. 4.
    G. A. Adadurov, O. N. Breusov, A. N. Dremin, and V. F. Tatsii, Sov. Powder Met. and Met. Ceram., 11, 859–61 (1971).CrossRefGoogle Scholar
  5. 5.
    R. A. Pruemmer, Ber. Dtsch. Keram. Ges., 50 [3], 75–81 (1973).Google Scholar
  6. 6.
    C. L. Hoenig and C. S. Yust, Am. Ceram. Soc. Bull., 60 [11], 1175 (1981).Google Scholar
  7. 7.
    K. Kawada and A. Onodera, Am. Ceram. Soc. Bull., 59, 1151–52 (1980).Google Scholar
  8. 8.
    A. V. Ananin, O. N. Breusov, A. N. Dremin, V. B. Ivanova, S. V. Pershin, V. F. Tatsii, and F. A. Fekhretdinov, in proceed- First All-Union Symposium on Shock Pressures, Vol. 2, Oct. 1973, Moscow, edited by S. S. Batsanov, Moscow, 1974. Trans, in Sandia Nat’l. Lab. Rept. SAND80–6119, April 1980.Google Scholar
  9. 9.
    C. Greskovich and J. H. Rosolowski, J. Am. Ceram. Soc., 59, [7–8], 336–43 (1976).CrossRefGoogle Scholar
  10. 10.
    J.-P. LeCompte, J. Jarrige, J. Mexmain, R. J. Brook, and F. L. Riley, J. Mat Is. Sci., 16, 3093–98 (1981).CrossRefGoogle Scholar
  11. 11.
    See e.g. D. L. Hankey, R. A. Graham, W. F. Hammetter, and B. Morosin, J. Matl. Sci. Lett, accepted.Google Scholar
  12. 12.
    E. Grady, J. Geophys. Res., 85 [B2], 913–24 (1980).CrossRefGoogle Scholar
  13. 13.
    C. P. Gazzara and D. R. Messier, Am. Ceram. Soc. Bull., 56, 777–80 (1977).Google Scholar
  14. 14.
    T. Sakai and M. Iwata, J. Matls. Sci., 12, 1659–65 (1977).CrossRefGoogle Scholar
  15. 15.
    R. E. Loehman and D. J. Rowcliffe, J. Am. Ceram. Soc., 63, 144 (1980);CrossRefGoogle Scholar
  16. R. E. Loehman, Ceramic Engineering and Science Proceedings, 1–2, 35–49 (1982).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • E. K. Beauchamp
    • 1
  • R. E. Loehman
    • 1
  • R. A. Graham
    • 1
  • B. Morosin
    • 1
  • E. L. Venturini
    • 1
  1. 1.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations