Advertisement

Shock-Induced Modification of Inorganic Powders

  • R. A. Graham
  • B. Morosin
  • E. L. Venturini
  • E. K. Beauchamp
  • W. F. Hammetter
Part of the Materials Science Research book series (MSR, volume 17)

Abstract

Early exploratory work in Japan,1, 2 the Soviet Union3, 4 and the United States5, 6 demonstrated that high pressure shock-wave loading such as produced by the detonation of high explosives or high speed projectile impact can substantially alter solid state reactivity. Such effects are manifest in catalytic activity,2, 7, 8 compound synthesis,1–3, 9 enhanced sinterability, 6, 9–11 reduction in reaction start temperature,12, 13 rapid growth of dense phase crystallites5, 14 and strong bonding in dynamic compaction and explosive welding.15 That such effects can be utilized in industrial operations is well demonstrated in synthetic diamond production,16–17 polycrystalline cubic boron nitride production17 and explosive welding. 18 Scientists in the Soviet Union have maintained a continuing effort in shock-induced chemistry and shock modification13 but mechanisms to account for and control shock-induced solid state reactivity are poorly understood. Presently, significant efforts in this area are developing in Japan and the United States.

Keywords

Shock Wave Electron Spin Resonance Electron Spin Resonance Signal Residual Strain Shock Loading 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Kimura, Japan. J. Appl. Phys., 2, 312 (1963).CrossRefGoogle Scholar
  2. 2.
    Y. Horiguchi and Y. Nomura, Carbon, 2, 436–37 (1965).CrossRefGoogle Scholar
  3. 3.
    Yu. M. Ryabinin, Sov. Phys. Tech. Phys., 1, 2575 (1956).Google Scholar
  4. 4.
    S. S. Batsanov, A. A. Deribas, E. V. Dulepov, M. G. Ermokov, and V. M. Kudinov, Combustion, Explosion and Shock Waves, 1, 47–49 (1965).CrossRefGoogle Scholar
  5. 5.
    P. S. DeCarli and J. C. Jamieson, Science, 133, 1821–22 (1961).CrossRefGoogle Scholar
  6. 6.
    O. R. Bergmann and J. Barrington, J. Amer. Ceramic Soc., 49, 502–07 (1966).CrossRefGoogle Scholar
  7. 7.
    S. S. Batsanov, G. K. Boreskov, G. U. Gridasova, N. P. Keier, L. M. Kefeli, V. M. Kudinov, V. I. Mali, and I. S. Sazonova, Kinetics and Catalysts, 8, 1140–46 (1967).Google Scholar
  8. 8.
    J. Golden, F. Williams, B. Morosin, E. L. Venturini, and R. A. Graham, pp. 72–76 in Shock Waves in Condensed Matter — 1981 (Menlo Park), AIP Conference Proceedings No. 78, edited by W. J. Nellis, L. Seaman, and R. A. Graham, American Institute of Physics, 1982.Google Scholar
  9. 9.
    See B. Morosin and R. A. Graham, in Shock Waves in Condensed Matter, loc cit, pp. 4–13.Google Scholar
  10. 10.
    J. D. Keck, D. L. Hankey, R. A. Graham, and B. Morosin, in Shock Waves in Condensed Matter, loc cit, pp. 82–86.Google Scholar
  11. 11.
    E. K. Beauchamp, R. E. Loehman, B. Morosin, E. Venturini, and R.A. Graham, this Proceedings.Google Scholar
  12. 12.
    D. L. Hankey, R. A. Graham, W. F. Hammetter, and B. Morosin, J. Mat. Science Lett., accepted.Google Scholar
  13. 13.
    G. A. Adadurov and V. I. Bol’danskii, Russian Chemical Reviews, 50, 948–57 (1981).CrossRefGoogle Scholar
  14. 14.
    G. E. Duvall and R. A. Graham, Rev. Mod. Phys., 49, 523–79 (1977).CrossRefGoogle Scholar
  15. 15.
    See e. g., M. A. Meyers and L. E. Murr, eds., Shock Waves and High-Strain Rate Phenomena in Metals, Plenum, NY, 1981.Google Scholar
  16. 16.
    Dupont Diamond, Characteristics, Performance and Product Grade, Dupont Company Bulletin E-37692.Google Scholar
  17. 17.
    See e. g., Report of the Research Laboratory of Engineering Materials, Tokyo Institute of Technology, No. 6, 1981, Nagatsuta, Yokohama, Japan.Google Scholar
  18. 18.
    Dupont’s Guide to Standard Products of Detaclad Explosive-Bonded Clad Metals Detacouple Welding Transition Joints, Dupont Company Bulletin E-15953.Google Scholar
  19. 19.
    L. Davison, D. M. Webb, and R. A. Graham, in Shock Waves in Condensed Matter, loc cit, pp. 67–71.Google Scholar
  20. 20.
    L. M. Lityagina, S. S. Kabilkina, T. A. Pashkina, and A. I. Khozyainov, Sov. Phys. Solid State, 20, 2009–10 (1978).Google Scholar
  21. 21.
    R. K. Linde and P. S. DeCarli, J. Chem. Phys., 50, 319–25 (1969).CrossRefGoogle Scholar
  22. 22.
    M. C. R. Symons, J. Chem. Soc. A, 1648–52 (1971).Google Scholar
  23. 23.
    R. R. Hasiguti, pp. 69–92 in Annual Review of Material Science, Vol. 2, edited by R. A. Huggins, R. H. Bube, and R. W. Roberts, Annual Reviews, Palo Alto, CA, 1972, and references therein.Google Scholar
  24. 24.
    L. N. Shen, O. W. Johnson, W. D. Ohlsen, and J. W. DeFord, Phys. Rev., B10, 1823–25 (1974).Google Scholar
  25. 25.
    G. V. Chandrashekhar and R. S. Title, J. Electrochem. Soc., 123, 392–95 (1976).CrossRefGoogle Scholar
  26. 26.
    E. Servicka, R. N. Schindler, and R. Schumacher, Ber. Bungsenges. Phys. Chem., 85, 192–95 (1981).Google Scholar
  27. 27.
    E. Servicka, M. W. Schlierkamp, and R. N. Schindler, Z. Naturforschung, 36a, 226–32 (1981).Google Scholar
  28. 28.
    S. Yokoyama, M. Hirose, and Y. Osaka, Japan. J. Appl. Phys., 20, L35-L37 (1981).CrossRefGoogle Scholar
  29. 29.
    R. S. Title, M. H. Brodsky, and J. J. Cuomo, p. 424 in Amorphous and Liquid Semiconductors, edited by W. E. Spear, CICL, Univ. of Edinburgh, 1977.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • R. A. Graham
    • 1
  • B. Morosin
    • 1
  • E. L. Venturini
    • 1
  • E. K. Beauchamp
    • 1
  • W. F. Hammetter
    • 1
  1. 1.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations