Explosive Consolidation of Aluminum Nitride Ceramic Powder: A Case History

  • W. H. Gourdin
  • S. L. Weinland
  • C. J. Echer
  • S. L. Huffsmith
Part of the Materials Science Research book series (MSR, volume 17)


Prummer1 and Hoenig and Yust2 have demonstrated that high densities can be achieved in explosively formed compacts made from various ceramic powders. Of those materials which have been tried, aluminum nitride (AlN) seems to be particularly suited to dynamic compaction. Cline and Heard3 have demonstrated that AlN becomes plastic under combined hydrostatic and uniaxial stress, suggesting that substantial flow may occur under shock loading. This is borne out by the observations of Hoenig andYust2 as well as Gourdin et al.4 who report considerable deformation of individual grains in explosively consolidated material. These authors also report the presence of an amorphous phase at grain boundaries, indicating that local energy deposition occurs during the passage of the shock wave. This amorphous phase may be responsible for the cohesiveness of dynamically consolidated AlN much like the interparticle melting observed in metal compacts.5,6


Aluminum Nitride Cylinder Axis Isothermal Heat Treatment Stress Amplification Ingoing Wave 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. A. Prummer, Ber. Dt. Keram, Ges., 50, 75 (1973).Google Scholar
  2. 2.
    C. L. Hoenig and C. S. Yust, Amer. Cer. Soc. Bull., 60, 1175 (1981).Google Scholar
  3. 3.
    C. F. Cline and H. C. Heard, J. Mat. Sci., 15_, 1889 (1980).CrossRefGoogle Scholar
  4. 4.
    W. H. Gourdin, C. J. Echer, C. F. Cline, and L. E. Tanner, p. 233ff in Proc. 7th International Conf. on High Energy Rate Fabrication, University of Leeds, 1981.Google Scholar
  5. 5.
    D. Raybould, D. G. Morris, and G. A. Cooper, J. Mat. Sci., 14, 2523 (1979).CrossRefGoogle Scholar
  6. 6.
    D. G. Morris, Metal Sci., 116ff (March 1981).Google Scholar
  7. 7.
    W. Herrmann, J. Appl. Phys., 40, 2490 (1969).CrossRefGoogle Scholar
  8. 8.
    M. M. Carroll and A. C. Holt, J. Appl. Phys., 43, 1626 (1972).CrossRefGoogle Scholar
  9. 9.
    H. P. Balzerowiak, Fr. Bock-Nussbaum, R. Prummer, and D. Schmidt, High Temp.-High Press., 3, 517 (1971).Google Scholar
  10. 10.
    W. H. Gourdin and L. H. Tanner, J. Mat. Sci., to be published (also Lawrence Livermore National Laboratory UCRL-87304).Google Scholar
  11. 11.
    G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, J. Amer. Cer. Soc., 64, 533 (1981).CrossRefGoogle Scholar
  12. 12.
    P. Chantikul, G. R. Anstis, B. R. Lawn, and D. B. Marshall, J. Amer. Cer. Soc., 64, 539 (1981).CrossRefGoogle Scholar
  13. 13.
    A. G. Evans and E. A. Charles, J. Amer. Cer. Soc., 59 371 (1976).CrossRefGoogle Scholar
  14. 14.
    K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mat. Sci. Lett., 1, 13 (1982).CrossRefGoogle Scholar
  15. 15.
    D. B. Marshall and A. G. Evans, Comm. Amer. Cer. Soc., C-182 (December 1981).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • W. H. Gourdin
    • 1
  • S. L. Weinland
    • 1
  • C. J. Echer
    • 1
  • S. L. Huffsmith
    • 1
  1. 1.Lawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations