Relationship Between Densification and High Temperature Mechanical Properties of HIPed Silicon Nitride

  • R. R. Wills
  • M. C. Brockway
  • G. K. Bansal
Part of the Materials Science Research book series (MSR, volume 17)


The higher pressures available in the HIP process permit the fabrication of yttria-based silicon nitride that cannot be prepared by conventional ceramic processing. Since both the densification and high temperature properties of silicon nitride are controlled by a similar mechanism the slow rate of densification in HIPed silicon nitride corresponds to lower creep rates and subcritical crack growth rates than in other additive-based silicon nitrides.


Creep Rate Silicon Nitride Liquid Phase Sinter Slow Crack Growth Steady State Creep Rate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. R. Wills and M. C. Brockway, Special Ceramics 7, Proc. Brit. Ceram. Soc., 31, 233–47 (1981).Google Scholar
  2. 2.
    D. C. Larsen and J. W. Adams, IIT Research Institute, November 1981, Interim Technical Report No. 11, Contract F-33615–79-C- 5100, U.S. Air Force Wright Aeronautical Laboratories.Google Scholar
  3. 3.
    A. G. Evans and R. W. Davidge, J. Mater. Sci., 5, 314–25 (1970).CrossRefGoogle Scholar
  4. 4.
    R. R. Wills, S. Holmquist, J. M. Wimmer, and J. A. Cunningham, J. Mater. Sci., 11, 1305–09 (1976).CrossRefGoogle Scholar
  5. 5.
    W. D. Kingery, J. Appl. Phys., 30, 301–06 (1959).CrossRefGoogle Scholar
  6. 6.
    M. Mitomo, J. Mater. Sci., 4, 1103–07 (1976).CrossRefGoogle Scholar
  7. 7.
    L. J. Bowen, T. G. Carruthers, and R. J. Brook, J. Amer. Ceram. Soc., 61, [7–8], 335–39 (1978).CrossRefGoogle Scholar
  8. 8.
    L. J. Bowen, R. J. Weston, T. G. Carruthers, and R. J. Brook, J. Mater. Sci., 13, 341–50 (1978).CrossRefGoogle Scholar
  9. 9.
    R. M. Cannon and H. Chowdhry, in Nitrogen Ceramics, edited by F. L. Riley, Noordoff International, Reading, Massachusetts, 1977.Google Scholar
  10. 10.
    R. L. Tsai and R. Raj, Communications of J. Amer. Ceram. Soc., June 1982.Google Scholar
  11. 11.
    R. Raj and C. K. Chyung, Acta. Metall., 29 [1], 159–96 (1981).Google Scholar
  12. 12.
    R. Raj and P. E. D. Morgan, J. Amer. Ceram. Soc., 64, [10], C143–45 (1981).Google Scholar
  13. 13.
    R. L. Tsai and R. Raj, J. Amer. Ceram. Soc., 65 [5], 270, 274 (1982).Google Scholar
  14. 14.
    R. L. Coble, J. Appl. Phys., 41 4798 (1970).CrossRefGoogle Scholar
  15. 15.
    R. Kossowsky, D. G. Miller, and E. S. Diaz, J. Mater. Sci., 10, 983 (1975).CrossRefGoogle Scholar
  16. 16.
    R. Kossowsky, in Ceramics for High Performance Applications, Second Army Materials Technology Conference, Brook Hill Publishing Company, 1974.Google Scholar
  17. 17.
    J. Weertman, Trans. ASM, 61, 680–93 (1968).Google Scholar
  18. 18.
    F. F. Lange, B. I. Davis, and D. R. Clarke, J. Mater. Sci., 15 [3], 601–10 (1980).CrossRefGoogle Scholar
  19. 19.
    R. E. Loehman, J. Amer. Ceram. Soc., 62 [9–10], 491–94 (1979).CrossRefGoogle Scholar
  20. 20.
    A. G. Evans and S. M. Weiderhorn, J. Mater. Sci., 9 [2], 270–78 (1974).CrossRefGoogle Scholar
  21. 21.
    R. L. Tsai and R. Raj, J. Amer. Ceram. Soc., 61 [9–10], 513–17 (1980).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • R. R. Wills
    • 1
  • M. C. Brockway
    • 1
  • G. K. Bansal
    • 1
  1. 1.Battelle, Columbus LaboratoriesColumbusUSA

Personalised recommendations