Ion Beam Deposition of Ceramic-Like Coatings

  • C. Weissmantel
  • K. Bewilogua
  • K. Breuer
  • J. Erler
  • B. Rau
  • G. Reisse
  • D. Roth
Part of the Materials Science Research book series (MSR, volume 17)


Over the last decade, the deposition of thin and thick films by condensing suprathermal, energetic particles has roused steadily increasing interest. The most convenient way to generate particle fluxes with excess energies in the range from a few eV to some keV is offered by using adequately accelerated ions that can be extracted from external sources or from a plasma sustained inside the deposition chamber. Although ion beam and plasma deposition processes have much in common, the term “ion beam deposition” should be applied only if the work pressure in the deposition chamber is below some 10-2 Pa. Then the mean free path of the particles is large compared with the usual dimensions, and gas phase interactions may often be neglected. A particular advantage of ion beam techniques is that the process parameters can be controlled rather independently within wide ranges of particle energies and flux densities. l–3 On the other hand, it must be emphasized that systematic investigations by ion beam techniques can contribute to optimize high-rate deposition processes, which on a technological scale are performed by plasma ion plating or magnetron sputtering.


Bias Voltage Thin Solid Film Silver Content Thermal Neutral Show Transmission Electron Micrographs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Gautherin and C. Weissmantel, Thin Solid Films, 50, 135 (1978).CrossRefGoogle Scholar
  2. 2.
    T. Takagi, Thin Solid Films, 92, 3 (1982).CrossRefGoogle Scholar
  3. 3.
    C. Weissmantel, Thin Solid Films, 92, 55 (1982).CrossRefGoogle Scholar
  4. 4.
    J. M. E. Harper, “Ion Beam Deposition,” in Thin Film Processes, edited by J. L. Vossen and W. Kern, Academic Press, NY, 1978.Google Scholar
  5. 5.
    G. Carter and D. G. Armour, Thin Solid Films, 80, 13 (1981).CrossRefGoogle Scholar
  6. 6.
    P. D. Reader and H. R. Kaufman, J. Vac. Sci. Technol., 12, 1344 (1975).CrossRefGoogle Scholar
  7. 7.
    O. Fiedler, G. Reisse, B. Schoneich, and C. Weissmantel, Proc. 4th Intern. Vac. Congr., Manchester, 1968, 569.Google Scholar
  8. 8.
    G. Guatherin, P. Bouchier, C. Schwebel, and P. Vapaille, Le Vide, 182, 235 (1976).Google Scholar
  9. 9.
    J. Franks, Le Vide, Suppl. to 196, 53 (1979).Google Scholar
  10. 10.
    K. Bewilogua, D. Dietrich, L. Pagel, C. Schurer, and C. Weissmantel, Surf. Sci., 86, 308 (1979).CrossRefGoogle Scholar
  11. 11.
    J. M. E. Harper, J. J. Cuomo, P. A. Leary, G. M. Summa, H. R. Kaufman, and F. J. Bresnock, J. Electrochem. Soc., 128, 1077 (1981).CrossRefGoogle Scholar
  12. 12.
    J. H. Freeman, Nature, 275, 634 (1978).CrossRefGoogle Scholar
  13. 13.
    K. Yagi, S. Tamura, and T. Tokuyama, Jap. J. Appl. Phys., 16, 245 (1977).CrossRefGoogle Scholar
  14. 14.
    A.E. T. Kuiper, G. E. Thomas, and W. J. Schouten, J. Crystal Growth, 51, 17 (1981).CrossRefGoogle Scholar
  15. 15.
    C. Weissmantel, G. Reisse, J. Erler, F. Henny, K. Bewilogua, and C. Schurer, Thin Solid Films, 63, 315 (1979).CrossRefGoogle Scholar
  16. 16.
    C. Weissmantel, O. Fiedler, G. Hecht, and G. Reisse, Thin Solid Films, 13, 359 (1972).CrossRefGoogle Scholar
  17. 17.
    G. Gautherin, C. Schwebel, and C. Weissmantel, Proc. 7th Intern. Vac. Congr., Berger, Vienna, 1977, 1579.Google Scholar
  18. 18.
    T. Takagi, I. Yamada, and A. Sasaki, J. Vac. Sci. Technol, 12, 1128 (1975).CrossRefGoogle Scholar
  19. 19.
    H-J. Erler, G. Reisse, and C. Weissmantel, Thin Solid Films, 65, 233 (1980).CrossRefGoogle Scholar
  20. 20.
    C. Weissmantel, Thin Solid Films, 96 (1982), in print.Google Scholar
  21. 21.
    S. Schiller, U. Heisig, and K. Goedicke, Thin Solid Films, 40, 327 (1977).CrossRefGoogle Scholar
  22. 22.
    J. E. Morris, Thin Solid Films, 11 299 (1972).CrossRefGoogle Scholar
  23. 23.
    N. C. Miller, B. Hardiman, and G. A. Shirn, J. Appl. Phys., 41, 1850 (1970).CrossRefGoogle Scholar
  24. 24.
    E. B. Priestley, B. Abeles, and R. W. Cohen, Phys. Rev. B 12, 2121 (1975).CrossRefGoogle Scholar
  25. 25.
    C. A. Neugebauer, Thin Solid Films, 6, 443 (1970).CrossRefGoogle Scholar
  26. 26.
    J. Gasperic and B. Navinsek, Thin Solid Films, 36, 353 (1976).CrossRefGoogle Scholar
  27. 27.
    P. Reinhardt, C. Reinhardt, G. Reisse, and C. Weissmantel, Thin Solid Films, 51, 99 (1978).CrossRefGoogle Scholar
  28. 28.
    H. Vora and T. J. Moravec, J. Appl. Phys., 52, 6151 (1981).CrossRefGoogle Scholar
  29. 29.
    D. Deitrich, Techn. Hochsch. Karl-Marx-Stadt, personal communication, 1982.Google Scholar
  30. 30.
    C. Weissmantel, C. Schurer, F. Frohlich, P. Grau, and H. Lehmann, Thin Solid Films, 61, L5 (1979).CrossRefGoogle Scholar
  31. 31.
    K. Bewilogua, D. Dietrich, G. Holzhuter, and C. Weissmantel, phys. stat. sol. (a), 71, K57 (1982).CrossRefGoogle Scholar
  32. 32.
    D. A. Thompson, Ratiation Effects, 56, 105 (1981).CrossRefGoogle Scholar
  33. 33.
    M. H. Brodsky, Thin Solid Films, 50, 57 (1978).CrossRefGoogle Scholar
  34. 34.
    K. Bewilogua, E. Bugiel, B. Rau, C. Schurer, and C. Weissmantel, Kristall und Technik, 15, 1205 (1980).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • C. Weissmantel
    • 1
  • K. Bewilogua
    • 1
  • K. Breuer
    • 1
  • J. Erler
    • 1
  • B. Rau
    • 1
  • G. Reisse
    • 1
  • D. Roth
    • 1
  1. 1.Sektion Physik/EBTechnische HochschuleKarl-Marx-StadtGerman Democratic Republic

Personalised recommendations