Laser Chemical Vapor Deposition (LCVD)

  • Susan D. Allen
Part of the Materials Science Research book series (MSR, volume 17)


Laser chemical vapor deposition (LCVD) is one of several recently developed deposition techniques using laser sources. The two predominant characteristics of a laser light source—its directionality and its monochromaticity—can both be used to advantage in the deposition of materials. The directionality inherent in a laser source allows energy to be aimed very precisely at an area with dimensions on the order of the wavelength of the particular laser, causing localized deposition. The monochromaticity can be used to deposit energy directly into reacting molecules by exciting either electronic or vibrational energy levels in the reacting species. This precise control of energy flow in the system allows the deposition to occur at substrate temperatures much below those required for thermal equilibrium.


Substrate Temperature Deposition Rate Irradiation Time Scanning Electron Microscopy Photograph Thickness Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. D. Allen, J. Appl. Phys., 52, 6501 (1981) and references therein.CrossRefGoogle Scholar
  2. 2.
    S. D. Allen and A. B. Trigubo, J. Appl. Phys. (Feb. 1983).Google Scholar
  3. 3.
    S. D. Allen and A. B. Trigubo, unpublished results.Google Scholar
  4. 4.
    Y. Rytz-Froidevaux, R. P. Salathe, and H. H. Gilgen, Phys. Lett., 84A, 216 (1981).Google Scholar
  5. 5.
    R. W. Bigelow, J. G. Black, C. B. Duke, W. R. Salaneck and H. R. Thomas, Thin Sol. Films, 94, 233 (1982).CrossRefGoogle Scholar
  6. 6.
    C. P. Christensen and K. M. Lakin, Appl. Phys. Lett., 32, 254 (1978);CrossRefGoogle Scholar
  7. V. Baranauskas, C. I. Z. Mammana, R. E. Klinger, and J. E. Greene, Appl. Phys. Lett., 36, 20 (1980);CrossRefGoogle Scholar
  8. D. J. Ehrlich, R. M. Osgood, Jr., and T. F. Deutsch, Appl. Phys. Lett., 39, 957 (1981);CrossRefGoogle Scholar
  9. D. Bauerle, P. Irsigler, G. Leyendecker, H. Noll, and D. Wagner, Appl. Phys. Lett., 40, 819 (1982).CrossRefGoogle Scholar
  10. 7.
    G. Leyendecker, D. Bauerle, P. Geittner, and H. Lydtin, Appl. Phys. Lett., 39, 921 (1981).CrossRefGoogle Scholar
  11. 8.
    S. D. Allen and A. B. Trigubo, J. Vac. Sci. Tech., 20, 469 (1982).CrossRefGoogle Scholar
  12. 9.
    R. J. von Gutfeld, R. E. Acosta, and L. T. Romankiw, IBM J. of Res. and Dev., 26, 136 (1982);CrossRefGoogle Scholar
  13. J. C. Puippe, R. E. Acosta, and R. J. von Gutfeld, J. Electrochem. Soc., 128, 2539 (1981);CrossRefGoogle Scholar
  14. R. J. von Gutfeld, E. E. Tynan, R. L. Melcher, and S. E. Blum, Appl. Phys. Lett., 35, 651 (1979).CrossRefGoogle Scholar
  15. 10.
    T. F. Deutsch, D. J. Ehrlich, and R. M. Osgood, Jr., Appl. Phys. Lett., 35, 175 (1979);CrossRefGoogle Scholar
  16. D. J. Ehrlich, R. M. Osgood, Jr., and T. F. Deutsch, J. Vac. Sci. Tech., 21, 23 (1982);CrossRefGoogle Scholar
  17. D. J. Ehrlich, R. M. Osgood, Jr., and T. F. Deutsch, IEEE J. Quant. QE- 16, 1233 (1980) and references therein.Google Scholar
  18. 11.
    R. Solanki, P. K. Boyer, J. E. Mahan, and G. J. Collins, Appl. Phys. Lett., 38, 572 (1981);CrossRefGoogle Scholar
  19. R. Solanki, P. K. Boyer, and G. J. Collins, Appl. Phys. Lett., 41, 1048 (1982).CrossRefGoogle Scholar
  20. 12.
    P. K. Boyer, G. A. Roche, W. H. Ritchie, and G. J. Collins, Appl. Phys. Lett., 40, 716 (1982);CrossRefGoogle Scholar
  21. P. K. Boyer, W. H. Ritchie, and G. J. Collins, J. Electrochem. Soc., 129, 2155 (1982).CrossRefGoogle Scholar
  22. 13.
    J. G. Berg, P. Yeung, and S. D. Allen, TRW, El Segundo, CA, unpublished results.Google Scholar
  23. 14.
    M. Hanabusa, A. Namiki, and Keitaro Yoshihara, Appl. Phys. Lett., 35, 626 (1979).CrossRefGoogle Scholar
  24. 15.
    R. W. Andreatta, C. C. Abele, J. F. Osmundsen, J. G. Eden, D. Lubben, and J. E. Greene, Appl. Phys. Lett., 40, 183 (1982).CrossRefGoogle Scholar
  25. 16.
    See also Proceedings of the MRS Symposium on Laser Diagnostics and Photochemical Processing for Semiconductor Devices (11–82), North Holland, NY.Google Scholar
  26. 17.
    R. H. Micheels, A. D. Darrow, and R. D. Rauh, Appl. Phys. Lett., 39, 418 (1981).CrossRefGoogle Scholar
  27. 18.
    R. F. Karlicek, V. M. Donnelly, and G. J. Collins, J. Appl. Phys., 53, 1084 (1982). American Institute of Physics Handbook, edited by D. E. Gray, McGraw-Hill, NY, 1972.CrossRefGoogle Scholar
  28. 20.
    P. D. Dapkus, H. M. Manasevit, and K. L. Hess, J. Cryst. Growth, 55, 10 (1981).CrossRefGoogle Scholar
  29. 21.
    P. D. Dapkus, private communication.Google Scholar
  30. 22.
    J. F. Ready, Effects of High-Power Laser Radiation, Academic Press, NY, 1971.Google Scholar
  31. 23.
    S. D. Allen and J. Goldstone, to be published.Google Scholar
  32. 24.
    C. F. Powell, J. H. Oxley, and J. M. Blocher, Jr., Vapor Deposition, Wiley, NY, 1968.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Susan D. Allen
    • 1
  1. 1.Center for Laser StudiesUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations