The Conversion of Methylchloropolysilanes and Polydisilylazanes to Silicon Carbide and Silicon Carbide/Silicon Nitride Ceramics, Respectively

  • Ronald H. Baney
  • John H. GaulJr.
  • Terranee K. Hilty
Part of the Materials Science Research book series (MSR, volume 17)


Engineering or structural ceramics have received attention by materials scientists in recent years. Much of the effort has been prompted by a need for energy conservation. This has translated into the search for materials with higher specific strengths for weight savings and material for higher temperature Carnot efficiencies for heat engine applications. The super alloys have been asymptotically approaching a limit of around 1373K; thus design engineers have turned to ceramics. The use of ceramic materials presents several technical problems one of which is their formation into complex shapes.


Char Yield Lithium Aluminum Hydride High Crosslink Density Ceramic Yield Preceramic Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Roy, J. Am. Cer. Soc., 52, 344 (1969).CrossRefGoogle Scholar
  2. 2.
    A. Shindo, Rept. Govt. Ind. Res. Inst., Osaka, No. 317 (1961).Google Scholar
  3. 3.
    S. Yajima, J. Hayashi, M. Omori, and K. Okamura, Nature, 261, 683–5 (1976);CrossRefGoogle Scholar
  4. S. Yajima, J. Hayashi, and M. Omori, U.S. Patent 4,100,233, July 11, 1978;Google Scholar
  5. S. Yajima, J. Hayashi, and K. Okamura, Nature, 2661, 521 (1977).CrossRefGoogle Scholar
  6. 4.
    W. Verbeek, U.S. Patent 3,853,567, November 8, 1973;Google Scholar
  7. W. Verbeek and G. Winter, Ger. Offen. 2,236,078, March 21, 1974;Google Scholar
  8. G. Winter, W. Verbeek, and M. Mansmann, Ger., May 16, 1974, U.S. Patent 3,892,583.Google Scholar
  9. 5.
    G. D. Cooper and A. R. Gilbert, J. Am. Chem. Soc., 82, 5042 (1960).CrossRefGoogle Scholar
  10. 6.
    J. C. Lockhart, Chem. Rev., 65, 131–51 (1965);CrossRefGoogle Scholar
  11. K. Moedritzer, J. Organometal. Chem. Rev., 6, 179–278 (1968);Google Scholar
  12. D. Weyenberg, L. Mahone, and W. Atwell, Am. NY Acad. Sci., 159, 38–55 (1969)CrossRefGoogle Scholar
  13. 7.
    R. H. Baney and J. H. Gaul, Jr., U.S. Patent 4,310,651, 1982.Google Scholar
  14. R. W. Baney and J. H. Gaul, Jr., U.S. Patent 4,298,558, 1981Google Scholar
  15. R. H. Baney and J. H. Gaul, Jr., U.S. Patent 4,314,956, 1982Google Scholar
  16. 10.
    R. H. Baney, U.S. Patent 4,310,482, Jan. 12, 1982.Google Scholar
  17. 11.
    R. H. Baney and J. H. Gaul, Jr., U.S. Patent 4,298,559, 1981.Google Scholar
  18. 12.
    R. H. Baney, U.S. Patent 4,310,481, Jan. 12, 1982.Google Scholar
  19. 13.
    Analysis performed by the Leco Corp., St. Joseph, MI.Google Scholar
  20. 14.
    Analysis performed by Pheonix Memorial Labs, Ann ArborGoogle Scholar
  21. 15.
    J. H. Gaul, Jr., U.S. Patent 4,340,619, July 20, 1982.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Ronald H. Baney
    • 1
  • John H. GaulJr.
    • 1
  • Terranee K. Hilty
    • 1
  1. 1.Dow Corning CorporationMidlandUSA

Personalised recommendations