Dispersion and Packing of Narrow Size Distribution Ceramic Powders

  • R. L. Pober
  • E. A. Barringer
  • M. V. Parish
  • N. Levoy
  • H. K. Bowen
Part of the Materials Science Research book series (MSR, volume 17)


A major problem in ceramics processing is that improved and reliable ceramic materials having the required properties, critical elements in the development of high technology systems, cannot be reproducibly manufactured. This lack of reproducibility in properties lies in the inability to control the development of specified microstructures, which for sintered materials depends on the characteristics of the starting powder, the green compact microstructure, and the sintering and coarsening processes.1 Although much significant work has been performed on the processes which occur during firing, many researchers now believe that the microstructures developed during sintering are essentially determined by the powder characteristics and packing.2 Recent studies have demonstrated improved stability of the microstructure against exaggerated grain growth with a monodisperse powder,3 and a significant reduction of sintering time and temperature with a submicron, narrow particle size distribution and with uniform, but not necessarily high, green density.4,5


Stable Dispersion Electrophoretic Deposition Ti02 Powder Solvation Force Powder Packing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. K. Bowen et al., Mat. Sci. and Eng., 44, 1056 (1980).CrossRefGoogle Scholar
  2. 2.
    G. Y. Onoda, Jr. and L. L. Hench, eds., Ceramics Processing Before Firing, John Wiley and Sons, NY, 1978.Google Scholar
  3. 3.
    M. F. Yan, R. M. Cannon, U. Chowdhry, and H. K. Bowen, Bull. Am. Ceram. Soc., 64, 19 (1981).CrossRefGoogle Scholar
  4. 4.
    W. H. Rhodes, J. Am. Ceram. Soc., 64, 19 (1981).CrossRefGoogle Scholar
  5. 5.
    E. A. Barringer and H. K. Bowen, J. Am. Ceram. Soc., 65 [12] (1982).Google Scholar
  6. 6.
    B. Fegley, M.I.T., personal communication.Google Scholar
  7. 7.
    T. C. Huynh, (Ph.D. Thesis), M.I.T., 1983.Google Scholar
  8. 8.
    W. R. Cannon, S. C. Danforth, J. H. Flint, J. S. Haggerty, and R. A. Marra, J. Am. Ceram. Soc., 65, 324 (1982).CrossRefGoogle Scholar
  9. 9.
    W. R. Cannon, S. C. Danforth, J. S. Haggerty, and R. A. Marra, J. Am. Ceram. Soc., 65, 330 (1982).CrossRefGoogle Scholar
  10. 10.
    M. V. Parish, (M.S. Thesis), M.I.T., 1982.Google Scholar
  11. 11.
    H. C. Hamaker, Physica, IV [10], 1058 (1937).CrossRefGoogle Scholar
  12. 12.
    R. J. Pugh and J. A. Kitchner, J. Coll. and Interface Sci., 35, 656 (1971).CrossRefGoogle Scholar
  13. 13.
    M. T. Strauss, to be published in J. Am. Ceram. Soc.Google Scholar
  14. 14.
    E. J. W. Verwey and J. Th. G. Overbeek, Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam, 1948.Google Scholar
  15. 15.
    J. Th. G. Overbeek, J. Coll. and Interface Sci., 58, 408 (1977).CrossRefGoogle Scholar
  16. 16.
    G. R. Weise and T. W. Healy, J. Coll. and Interface Sci., 51, 427 (1975).CrossRefGoogle Scholar
  17. 17.
    T. Sato and R. Ruch, Stabilization of Colloidal Dispersions by Polymer Adsorption, Marcel Dekker, Inc., NY, 1980.Google Scholar
  18. 18.
    E. S. Tormey, (Ph.D. Thesis), M.I.T., 1982.Google Scholar
  19. 19.
    T. R. Gattuso, M.I.T., personal communication.Google Scholar
  20. 20.
    C. Foss, (M.S. Thesis), M.I.T., 1982.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • R. L. Pober
    • 1
  • E. A. Barringer
    • 1
  • M. V. Parish
    • 1
  • N. Levoy
    • 1
  • H. K. Bowen
    • 1
  1. 1.Materials Processing CenterMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations