Advertisement

Vascular Smooth Muscle Reactivity in Hypoxia

  • J. Grote
  • G. Siegel

Abstract

Arterial as well as tissue hypoxia induces vasodilation and a subsequent increase of blood flow in several organs [2,5,7,11,13]. In brain tissue regional blood flow increases significantly if the arterial oxygen falls below 60 mmHg. In the presence of hypoxia severe enough to cause anoxia in single cells, characteristic metabolic changes develop in cerebral cortex. Therefore, adjustment of the vascular system under these conditions is usually attributed to metabolic factors [9]. Among these K+, H+ ions, and adenosine seem to play an important role [2,7,13].

Keywords

Smooth Muscle Membrane Potential Vascular Smooth Muscle Vascular Smooth Muscle Cell Oxygen Tension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. J. Block, H. Feinberg, K. Herbaczynska-Cedro and J. R. Vane, Anoxia-induced release of prostaglandins in rabbit isolated hearts, Circ. Res., 36: 34–42 (1975).PubMedCrossRefGoogle Scholar
  2. 2.
    D. W. Busija and D. D. Heistad, Factors involved in the physiological regulation of the cerebral circulation, Rev. Physiol. Biochem. Pharmacol., 101: 161–211 (1984).PubMedCrossRefGoogle Scholar
  3. 3.
    R. Busse, U. Förstermann, H. Matsuda and U. Pohl, The role of prostaglandins in the endothelium-mediated vasodilatory response to hypoxia, Pflugers Arch., 401: 77–83 (1984).PubMedCrossRefGoogle Scholar
  4. 4.
    R. Detar, Mechanism of physiological hypoxia-induced depression of vascular smooth muscle contraction, Am. J. Physiol., 238: H761 - H769 (1980).PubMedGoogle Scholar
  5. 5.
    B. R. Duling, Oxygen sensitivity of vascular smooth muscle. II. In vivo studies, Am J. Physiol., 227:42–49 (1974).PubMedGoogle Scholar
  6. 6.
    R. F. Furchgott and J. V. Zawadzki, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine, Nature, 288: 373–376 (1980).PubMedCrossRefGoogle Scholar
  7. 7.
    J. Grote, Cerebral blood flow regulation under conditions of arterial hypoxia, in: “Cerebral Blood Flow”e Arterial System”, R. D. Bauer and R. Busse, eds., Springer, Berlin, Heidelberg and New York, pp 209–215 (1978).CrossRefGoogle Scholar
  8. 8.
    J. Grote, K. Zimmer and R. Schubert, Effects of severe arterial hypocapnia on regional blood flow regulation, tissue PO2 and metabolism in the brain cortex of cats, Pflugers Arch., 391: 195–199 (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    J. Grote and R. Schubert, Regulation of cerebral perfusion and PO2 in normal and edematous brain tissue, in: “Oxygen Transport to Human Tissue”, J. A. Loeppky and M. L. Riedesel, eds., Elsevier North Holland, Amsterdam, New York and Oxford, pp 169–178 (1982).Google Scholar
  10. 10.
    P. Hellstrand, B. Johansson and K. Norberg, Mechanical, electrical and biochemical effects of hypoxia and substrate removal on spontaneously active vascular smooth muscle, Acta Physiol. Scand., 100: 69–83 (1977).PubMedCrossRefGoogle Scholar
  11. 11.
    W. F. Jackson and B. R. Duling, The oxygen sensitivity of hamster cheek pouch arterioles. In vitro and in situ studies, Circ. Res., 53:515–525 (1983).PubMedCrossRefGoogle Scholar
  12. 12.
    A. Kurtz, W. Jelkmann, J. Pfeilschrifter and C. Bauer, Role of prostaglandins in hypoxia-stimulated erythropoietin production, Am. J. PhysioL, 249: C3 - C8 (1985).PubMedGoogle Scholar
  13. 13.
    W. Kuschinsky and U. Wahl, Local chemical and neurogenic regulation of cerebral vascular resistance, PhysioL Rev., 6: 202–211 (1978).Google Scholar
  14. 14.
    T. A. McCalden, R. G. Nath and K. Thiele, Prostacyclin and vasodilator mechanisms in the cerebral circulation, Blood Vessels, 20: 202 (1983).Google Scholar
  15. 15.
    R. M. J. Palmer, A. G. Ferrige and S. Moncada, Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor, Nature, 327: 524–526 (1987).PubMedCrossRefGoogle Scholar
  16. 16.
    J. D. Pickard, Role of prostaglandins and arachidonic acid derivatives in the coupling of cerebral blood flow to cerebral metabolism, J. Cereb. Blood Flow Metab., 1: 361–384 (1981).PubMedCrossRefGoogle Scholar
  17. 17.
    G. M. Rubanyi and P. M. Vanhoutte, Hypoxia releases a vasoconstrictor substance from the canine vascular endothelium, J. PhysioL, 364: 45–56 (1985).PubMedCentralPubMedGoogle Scholar
  18. 18.
    K. Schrör, Prostaglandine und Endothelzellen, Z. Kardiol., Suppl. 7: 93–97 (1984).Google Scholar
  19. 19.
    G. Siegel, Membranphysiologische Grundlagen der peripheren Gefässregulation, Physiologie aktuell, 1: 31–52 (1986).Google Scholar
  20. 20.
    G. Siegel, R. Ehehalt and H. P. Koepchen, Membrane potential and relaxation in vascular smooth muscle, in: “Mechanisms of Vasodilatation”, P. M. Vanhoutte and I. Leusen, Karger, Basel, pp 56–72 (1978).Google Scholar
  21. 21.
    G. Siegel and J. Grote, Hypoxia effects hyperpolarization and relaxation in canine vascular smooth muscle, Fed. Proc., 46: 507 (1987).Google Scholar
  22. 22.
    G. Siegel, J. Grote, K. Zimmer, A. Adler and B. Litza, Electrophysiological effects of hypoxia on vasocular smooth muscle, in: “Vasodilatation”, P. M. Vanhoutte, ed., Raven Press, New York, pp 371–376 (1988).Google Scholar
  23. 23.
    G. Siegel, G. Stock, F. Schnalke and B. Litza, Electrical and mechanical effects of prostacyclin in the canine carotid artery, in: “Prostacyclin and its Stable Analogue Iloprost”, R. J. Gryglewski and G. Stock, Springer, Berlin, pp 143–149 (1987).CrossRefGoogle Scholar
  24. 24.
    P. M. Vanhoutte, Effects of anoxia and glucose depletion on isolated veins of the dog, Am. J. Physiol., 230: 1261–1268 (1976).PubMedGoogle Scholar
  25. 25.
    P. M. Vanhoutte, The end of the quest?, Nature, 327: 459–460 (1987).PubMedCrossRefGoogle Scholar
  26. 26.
    P. M. Vanhoutte, G. M. Rubanyi, V. M. Miller and D. S. Houston, Modulation of vascular smooth muscle contraction by the endothelium, Ann. Rev. Physiol., 48: 307–320 (1986).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • J. Grote
    • 1
  • G. Siegel
    • 2
  1. 1.Institute of Physiology IUniversity of BonnBonn 1Germany
  2. 2.Institute of PhysiologyFree University of BerlinBerlin 33Germany

Personalised recommendations