Physiology and Pathophysiology of the Cerebro-Venous Circulation

  • Ludwig M. Auer


The different cortical layers of the brain are drained by deep, intermediate and superficial branches of postcapillary venules (nomenclature of H. Duvernoy) [1]. Most of the cortical venous blood reaches the superficial pial veins, which have a rich network of short and long veno-venous connections [2]. The latter are draining into bridging veins, which enter the durai sinus. A number of large pial collateral veins, the Rolandic, Sylvian, Trolard’s vein, the superficial middle cerebral veins, and Labbé’s vein usually join in the temporo-parietal region. Another system of large draining veins collects blood from the deep structures and empties into the great vein of Galen. It is known from neurosurgical operations that the redundancy of the collateral venous system prevents circulatory disturbances if major collecting veins are occluded. Exceptions, however, are the Rolandic vein and, thus, the posterior part of the superior sagittal sinus (SSS) including the confluens sinuum (Torcular herophili).


Intracranial Pressure Cerebral Blood Volume Superior Sagittal Sinus Cerebral Vein Postcapillary Venule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Duvernoy, Cortical veins of the human brain, in: “Cerebral Blood Flow”e Cerebral Veins: An Experimental and Clinical Update”, L. M. Auer and F. Loew, eds., Springer, New York, pp 3–38 (1983).CrossRefGoogle Scholar
  2. 2.
    L. M. Auer, Intravitalmikrokopische Beobachtung der pialen Gefäße im Tierexperiment, Zentralbi. Nchrg, 38: 175–184 (1977).Google Scholar
  3. 3.
    R. Kleinert and L. M. Auer, Actin and myosin positive immunostaining of contractile elements in cerebral veins and venules, in preparation.Google Scholar
  4. 4.
    L. Edvinsson, L. M. Auer and R. Uddman, Autonomic nerves and morphological organization of cerebral veins, in: “Cerebral Blood Flow”e Cerebral Veins: An Experimental and Clinical Update”, L. M. Auer and F. Loew, eds., Springer, New York, pp 73–79 (1983).Google Scholar
  5. 5.
    L. M. Auer, L. Edvinsson and B. B. Johansson, Effect of sympathetic nerve stimulation and adrenoreceptor blockade on pial arterial and venous calibre and intracranial pressure in the cat, Acta Physiol. Scand, 119: 213–217 (1983).PubMedCrossRefGoogle Scholar
  6. 6.
    K. Ulrich, L. M. Auer and W. Kuschinsky, Cat pial venoconstriction by topical microapplication of norepinephrine, J. Cereb. Blood Flow Metab, 2: 109–111 (1982).PubMedCrossRefGoogle Scholar
  7. 7.
    L. Edvinsson, K. C. Nielsen, C. H. Owman, H. and K. A. West, Sympathetic adrenergic influence on brain vessels as studied by changes in cerebral blood volume of mice, Eur. Neurol,6: 193–202 (1971/72).Google Scholar
  8. 8.
    L. M. Auer and B. B. Johansson, Pial venous constriction during cervical sympathetic stimulation in the cat, Acta Physiol. Scared, 110: 203–205 (1980).CrossRefGoogle Scholar
  9. 9.
    S. Sadoshima, M. Thames and D. Heistad, Cerebral blood flow during elevation of intracranial pressure: role of sympathetic nerves, Am. J. Physiol, 10: H78 - H84 (1981).Google Scholar
  10. 10.
    D. Heistad and M. Marcus, Response to “Do vasomotor nerves significantly regulate cerebral blood flow?”, Circ. Res, 43: 494–495 (1978).PubMedCrossRefGoogle Scholar
  11. 11.
    T. Itakura, K. Nakakita, I. Kamel et al., Aminergic innervation of cerebral veins. Histochemical comparison with extracranial veins, J. Neurosurg, 60: 140–144 (1984).PubMedCrossRefGoogle Scholar
  12. 12.
    L. Edvinsson, J. McCulloch and R. Uddman, Feline cerebral veins and arteries: comparison of autonomic innervation and vasomotor responses, J. PhysioL, 325: 161–173 (1982).PubMedCentralPubMedGoogle Scholar
  13. 13.
    T. Itakura, H. Yokote, H. Kimura et al., 5-Hydroxytryptamine innervation of vessels in the rat cerebral cortex, J. Neurosurg, 62: 42–47 (1985).PubMedCrossRefGoogle Scholar
  14. 14.
    J. McCulloch, L. Edvinsson and P. Watt, Comparison of the effects of potassium and pH on the calibre of cerebral veins and arteries, Pflügers Arch., 393: 95–98 (1982).Google Scholar
  15. 15.
    J. E. Hardebo, J. Kahrström, C. H. Owman and L. G. Salford, Vasomotor effects of neurotransmitters and modulators on isolated human pial veins, J. Cereb. Blood Flow Metabl, 7: 612–618 (1987).CrossRefGoogle Scholar
  16. 16.
    J. M. Luce, J. S. Huseby, W. Kirk and J. Butler, A Starling resistor regulates cerebral venous outflow in dogs, J. Appl. Physiol. Respirat. Environ. Exercise Physiol, 53: 1496–1503 (1982).Google Scholar
  17. 17.
    K. Shulman and G. R. Verdier, Cerebral vascular resistance changes in response to cerebrospinal fluid pressure, Am J. Physiol, 213: 1084–1088 (1967).PubMedGoogle Scholar
  18. 18.
    J. M. Luce, J. S. Huseby, W. Kirk and J. Butler, Mechanism by which positive end-expiratory pressure increases cerebrospinal fluid pressure in dogs, J. Appl. PhysioL Respirat. Environ. Exercise Physiol, 52: 231–235 (1982).Google Scholar
  19. 19.
    A. L. Benabid, J. C. Persat, J. de Rougemont et al., Intracranial pressure IV–relationship with post-capillary vascular pressures, J. Physiol, 74: 369–378 (1978).Google Scholar
  20. 20.
    J. P. Holt, The collapse factor in measurement of venous pressure, Am J. Physiol, 134: 292 (1941).Google Scholar
  21. 21.
    E. H. Starling, “Cerebral Blood Flow”e Law of the Heart”, The Linacre lecture delivered at St John’s College, Cambridge 1915, Longmans, Green, London (1918).Google Scholar
  22. 22.
    A. Noordergraaf, “Circulatory System Dynamics”, Academic Press, New York (1978).Google Scholar
  23. 23.
    S. Perlmutt and R. L. Riley, Hemodynamics of collapsible vessels with tone: the vascular waterfall, J. AppL PhysioL, 18: 924–932 (1963).Google Scholar
  24. 24.
    K. Yada, Y. Nakagawa and M. Tsuru, Circulatory disturbance of the venous system during experimental intracranial hypertension, J. Neurosurg, 39: 723–729 (1973).PubMedCrossRefGoogle Scholar
  25. 25.
    L. M. Auer and N. Ishiyama, Cerebrovascular response to elevated intracranial pressure, in: “Intracranial Pressure VI”, J. D. Miller, G. M. Teasdale, J. O. Rowan, S. L. Galbraith and A. D. Mendelow, eds., Springer, Berlin and Heidelberg, pp 399–403 (1986).Google Scholar
  26. 26.
    Y. Nakagawa, M. Tsuru and K. Yada, Site and mechanism for compression of the venous system during experimental intracranial hypertension, J Neurosurg, 41: 427–434 (1974).PubMedCrossRefGoogle Scholar
  27. 27.
    L. M. Auer, N. Ishiyama and R. Pucher, Cerebrovascular response to intracranial hypertension, Acta Neurochir, 84: 124–128 (1987).PubMedCrossRefGoogle Scholar
  28. 28.
    L. M. Auer, N. Ishiyama, K. C. Hodde, R. Kleinert and R. Pucher, Effect of intracranial pressure on bridging veins in rats, J. Neurosurg, 67: 263–268 (1987).PubMedCrossRefGoogle Scholar
  29. 29.
    Y. Kato, M. Mokry and L. M. Auer, Cerebrovascular response to elevation of venous pressure, in preparation.Google Scholar
  30. 30.
    L. M. Auer and E. T. MacKenzie, Phsiology of the cerebral venous system, in: The Cerebral Venous System and Its Disorders“, J. P. Kapp and H. M. Schmidek, eds., Grune and Stratton Inc., New York (1984).Google Scholar
  31. 31.
    L. M. Auer, The pathogenesis of hypertensive encephalopathy, Acta Neurochir, (Suppl.) 23: 1–111 (1978).Google Scholar
  32. 32.
    L. M. Auer, B. B. Johansson and E. T. MacKenzie, Cerebral venous pressure during actively induced hypertension and hypercapnia in cats, Stroke, 11: 180–183 (1980).PubMedCrossRefGoogle Scholar
  33. 33.
    B. B. Johansson, Blood-brain barrier dysfunction in acute arterial hypertension, Dissertation, Göteborg (1974).Google Scholar
  34. 34.
    S. Sato, S. Toya, M. Ohtani and T. Kawase, The effect of sagittal sinus occlusion on BBB permeability and cerebral blood flow in the dog, in: “Brain Edema”, Y. Inaba, I. Klatzo, M. Spatz, eds, Springer, Berlin, pp 235–239 (1986).Google Scholar
  35. 35.
    L. M. Auer, Sympathetic control of pial vessels under in vivo conditions, in: “Neural Regulation of Brain Circulation”, C.H. Owman and J. E. Hardebo, eds., Elsevier Science Publishers BV., Amsterdam, pp 497–513 (1986).Google Scholar
  36. 36.
    L. M. Auer, I. Sayama, B. B. Johansson et al., Pial venous reaction to sympathetic stimulation during elevated intracranial pressure, in: “Cerebral Blood Flow”e Cerebral Veins: An Experimental and Clinical Update”, L. M. Auer and F. Loew, eds., Springer, New York, pp 143–153 (1983).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Ludwig M. Auer
    • 1
  1. 1.Department of NeurosurgeryUniversity of Homburg/SaarHomburg/SaarGermany

Personalised recommendations