Advertisement

Eicosanoids, Peptides and Amines and the Cerebral Blood Vessels

  • G. Feuerstein

Abstract

The brain, like every other organ, is dependent on continuous blood flow to maintain its functions. However, the brain is unique among the organs in its tight relationships between blood flow, oxygen and glucose metabolism and neuronal activity. Of primary importance in this regard are ionic species and metabolic products such as potassium, calcium, carbon dioxide and lactate which in spite of careful regulation might also be subjected to rapid and profound fluctuations.

Keywords

Cerebral Blood Flow Cerebral Artery Trigeminal Ganglion Vasoactive Intestinal Polypeptide Cerebral Circulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. D. Pickard, Ionic and eicosanoid regulation of cerebrovascular smooth muscle contraction, in: “Cerebral Blood Flow”, J. H. Wood, ed., McGraw Hill, New York, pp 131–144 (1987).Google Scholar
  2. 2.
    E. Betz, Cerebral blood flow–its measurement and regulation, Physiol. Rev, 52: 595–630 (1972).PubMedGoogle Scholar
  3. 3.
    E. Betz, H. G. Enzenrob and V. Vlahov, Interaction of H+ and Ca++ in the regulation of local pial vascular resistance, Pflügers Arch, 34: 79–88 (1973).Google Scholar
  4. 4.
    I. R. Cameron and J. Caronna, The effect of local changes in potassium and bicarbonate concentration on hypothalamic blood flow in the rabbit, J. PhysioL, 262: 415–430 (1976).PubMedCentralPubMedGoogle Scholar
  5. 5.
    R. G. Dacey and B. R. Duling, A study of rat intracerebral aterioles: methods, morphology and reactivity, Am. J. Physiol, 243: H598 - H606 (1982).PubMedGoogle Scholar
  6. 6.
    W. Kuschinsky, M. Wahl, O. Bosse and K. Thurau, Perivascular potassium and pH as determinants of local pial arterial diameter in cats: a micro-application study, Circ. Res, 31: 240–247 (1972).PubMedGoogle Scholar
  7. 7.
    J. L. Pannier, J. Weyne, G. Demeester and I. Leusen, Influence of changes in the acid-base composition of the ventricular system on cerebral blood flow in cats, Pflügers Arch, 333: 337–351 (1972).PubMedGoogle Scholar
  8. 8.
    M. Wahl, P. Deetjen, K. Thurau, D. H. Ingvar and N. A. Lassen, Micropuncture evaluation of the importance of perivascular pH for the arteriolar diameter on the brain surface, Pflügers Arch, 316: 152–163 (1970).PubMedGoogle Scholar
  9. 9.
    H. A. Kontos, A. J. Raper and J. L. Patterson, Analysis of vasoactivity of local pH, pCO2 and bicarbonate on pial vessels, Stroke, 8: 358–360 (1977).PubMedGoogle Scholar
  10. 10.
    N. Toda, Potassium induced relaxation in isolated cerebral arteries contracted with prostaglandin F2 a, Pflügers Arch., 364: 235–242 (1976).Google Scholar
  11. 11.
    N. Toda, Responsiveness to potassium and calcium ions of isolated cerebral arteries, Am. J. PhysioL, 227: 1206–1211 (1974).PubMedGoogle Scholar
  12. 12.
    C. Carivin, R. Leutzenhiser and C. Van Breemen, Mechanisms of calcium antagonist induced vasodilation, Ann. Rev. PharmacoL ToxicoL, 23: 373–396 (1983).Google Scholar
  13. 13.
    M. C. Evans, R. A. F. Linton and I. R. Cameron, The effect of local changes in calcium concentration on hypothalamic blood flow in the anesthetized rabbit, Acta Neurol. Scand, 56 (Suppl. 64 ), 21: 8–9 (1977).Google Scholar
  14. 14.
    J. D. Pickard, Role of prostaglandins and arachidonic acid derivatives in the coupling of cerebral blood flow to cerebral metabolism, J. Cereb. Blood Flow Metab, 1: 361–384 (1981).PubMedGoogle Scholar
  15. 15.
    L. S. Wolfe, Eicosanoids–prostaglandins thromboxanes leukotrienes and other derivatives of carbon 20 unsaturated fatty acids, J. Neurochem, 38: 1–4 (1982).PubMedGoogle Scholar
  16. 16.
    D. J. Boullin, S. Bunting, W. P. Blaso, T. M. Hunt and S. Moncada, Responses of human and baboon arteries to prostaglandin endoperoxides and biologically generated and synthetic prostacyclin, Br. J. Clin. Pharmacol, 7: 138–147 (1979).Google Scholar
  17. 17.
    N. Toda, Responses to prostaglandin H2 and I2 of isolated dog cerebral and peripheral arteries, Am J. Physiol, 238: H111 - H117 (1980).PubMedGoogle Scholar
  18. 18.
    N. Toda and M. Miyorzaki, Responses of isolated dog cerebral and peripheral arteries to prostaglandins after application of aspirin and polyphloretin phosphate, Stroke, 9: 490–498 (1978).PubMedGoogle Scholar
  19. 19.
    K. S. Paul, E. T. Whalley, C. H. Forster, R. Lye and J. Dutton, Prostacyclin and cerebral vessel relaxation, J. Neurosurg, 57: 334–340 (1982).PubMedGoogle Scholar
  20. 20.
    T. Uski, K. E. Andersson, L. Brandt, L. Edinsson and B. Ljunggren, Responses of isolated feline and human cerebral arteries to prostacyclin and some of its metabolites, J. Cereb. Blood Flow Metab, 3: 238–245 (1983).PubMedGoogle Scholar
  21. 21.
    E. F. Ellis, E. P. Wei and H. A. Kontos, Vasodilation of cat cerebral arterioles by prostaglandin D2, E 2, G2 and I2, Am. J. Physiol, 237: H381 - H385 (1979).Google Scholar
  22. 22.
    B. Samuelsson, Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation, Science, 220: 568–575 (1983).PubMedGoogle Scholar
  23. 23.
    G. Feuerstein, Autonomic pharmacology of leukotriences, J. Autonom. Pharmacol, 5: 149–168 (1985).Google Scholar
  24. 24.
    G. Feuerstein and J. M. Hallenbeck, Leukotrienes in health and disease, FASEB, 1: 186–192 (1987).Google Scholar
  25. 25.
    P. J. Piper, “Cerebral Blood Flow”e Leukotrienes”, Raven Press, New York (1986).Google Scholar
  26. 26.
    A. Dembinska Kiec, T. Simmet and B. A. Peskar, Formation of leukotriene C4 like material by rat brain tissue, Eur. J. Pharmacol., 99: 57–62 (1984).Google Scholar
  27. 27.
    P. J. Piper and A. W. B. Stanton, Actions of leukotrienes in special circulations of the pig, Adv. Prostag. Thromb. Leukot. Res, 16: 255–260 (1980).Google Scholar
  28. 28.
    D. Tagari, G. H. DuBoulay, V. Aiken and D4 J. Boullin, Leukotriene D and the cerebral vasculature in vivo and in vitro, Prostag. Leukot. Med, 11: 281–297 (1983).Google Scholar
  29. 29.
    T. Kawitami, M. A. Little and E. F. Ellis, Effect of leukotrienes, 12-HETE, histamine, bradykinin and 5-hydroxytryptamine on in vivo rabbit cerebral arteriolar diameter, J. Cereb. Blood Flow Metab, 5: 554–559 (1985).Google Scholar
  30. 30.
    A. Unterberg, W. Schmidt, T. Polk, M. Wahl, E. Ellis, A. Marmarou and A. Baethmann, Evidence against leukotrienes as mediators of brain edema, J. Cereb. Blood Flow Metab, 7 (Suppl. 1): 5625 (1987).Google Scholar
  31. 31.
    D. W. Busija, C. W. Leffler and D. G. Beasley, Effects of leukotriene C4, D4 and E4 on cerebral arteries of newborn pigs, Pediat. Res, 20: 973–976 (1986).PubMedGoogle Scholar
  32. 32.
    K. L. Balck, Leukotriene C4 induced vasogenic edema in rats, Prostag. Leukot. Med, 14: 339–340 (1984).Google Scholar
  33. 33.
    D. Regoli and J. Barabe, Pharmacology of bradykinin and related kinins, Pharmacol. Rev, 32: 1–46 (1980).PubMedGoogle Scholar
  34. 34.
    D. H. Gawlowski, A. B. Ritter and W. Duran, Reproducibility of microvascular permeability responses to successive topical applications of bradykinin in the hamster cheek pouch, Microvascular Res, 24: 354–363 (1982).Google Scholar
  35. 35.
    M. Wah, A. R. Young, L. Edvinsson and F. Wagner, Effects of kininase II inhibitors on the vasomotor response to bradykinin of feline intracranial and entracranial arteries in vitro and in situ, J. Cereb. Blood Flow Metab, 3: 39–45 (1983).Google Scholar
  36. 36.
    E. G. Erdös, “Bradykinin, Kallidin and Kallikrein”, Handbook Exp. Pharmacol., Vol. 25 ( Suppl), Springer-Verlag, Berlin, Heidelberg and New York (1979).Google Scholar
  37. 37.
    A. Baethmann, W. Oettinger, W. Rothenfusser, O. Kempski, A. Unterberg and R. Geiger, Brain edema factors: current state with particular reference to plasma constituents and glutamate, in: “Advances in Neurology 28, Brain Edema”, J. Cervos-Navarro and R. Ferszt, eds., Raven Press, New York, pp 171–195 (1980).Google Scholar
  38. 38.
    K. Maier-Hauff, A. J. Baethmann, M. Lange, L. Schürer and A. Unterberg, The Kallikrein-kinin system as mediator in vasogenic brain edema, Part II, J. Neurosurg, 61: 97–106 (1984).PubMedGoogle Scholar
  39. 39.
    E. T. Whalley and M. Wahl, The effect of kininase II inhibitors on the response of feline cerebral arteries to bradykinin and angiotensin, Pflügers Arch, 398: 175–177 (1983).PubMedGoogle Scholar
  40. 40.
    N. Toda, Actions of bradykinin on isolated cerebral and peripheral arteries, Am. J. Physiol, 232: H267 - H274 (1977).PubMedGoogle Scholar
  41. 41.
    E. T. Whalley and M. Wahl, Analysis of bradykinin receptor mediating relaxation of cat cerebral arteries in vivo and in vitro, Naunyn Schmiedebergs Arch. PharmacoL, 323: 66–71 (1983).Google Scholar
  42. 42.
    M. Wahl, Local chemical neural and humoral regulation of cerebrovascular resistance vessels, J. Cardiovascular Pharmacol, 7 (Suppl. 3): 536–546 (1985).Google Scholar
  43. 43.
    A. Unterberg, M. Wahl and A. Baethmann, Effects of bradykinin on cerebrovascular permeability and resistance, J. Cereb. Blood Flow Metab, 3 (Suppl. 1): 5234–5235 (1983).Google Scholar
  44. 44.
    A. Unterberg, M. Wahl and A. Baethmann, Effects of bradykinin on permeability and diameter of pial vessels in vivo, J. Cereb. Blood Flow Metab, 4: 574–585 (1984).PubMedGoogle Scholar
  45. 45.
    M. Wahl, A. Unterberg and A. Baethmann, Intravital fluorescence microscopy for the study of blood brain barrier function, Int. J. Microcirc. Clin. Exp., 4: 3–18 (1985).Google Scholar
  46. 46.
    K. Tatemoto, M. Carlquist and V. Mutt, Neuropeptide Y–a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide, Nature, 296: 659–660 (1982).PubMedGoogle Scholar
  47. 47.
    L. Edvinsson, P. Emsson, J. McCulloch, K. Tatemoto and R. Uddman, Neuropeptide Y: cerebrovascular innervation and vasomotor effects in the cat, Neurosci. Lett, 43: 79–84 (1983).PubMedGoogle Scholar
  48. 48.
    L. Edvinsson, P. Emsson, J. McCulloch, K. Tatemoto and R. Uddman, Neuropeptide Y: immunocytochemical localization to and effect upon pial arteries and veins in vitro and in situ, Acta Physiol. Scand, 122: 155–163 (1984).Google Scholar
  49. 49.
    E. Edblad, L. Edvinsson, C. Wahlestedt, R. Udalman, R. Hakanson and F. Sundler, Neuropeptide Y co-exists and co-operates with noradrenaline in perivascular nerve fibers, Regulatory Peptides, 8: 225–235 (1984).Google Scholar
  50. 50.
    L. Edvinsson, and R. Ekman, Distribution and dilatory effect of vasoactive intestinal polypeptide (VIP) in human cerebral arteries, Peptides, 5: 329–331 (1984).PubMedGoogle Scholar
  51. 51.
    L. Edvinsson, J. Fahrenkrug, J. Hanko, C. Owman, F. Sundler and R. Uddman, VIP (Vasoactive Intestinal Polypeptide)-containing nerves of intracranial arteries in mammals, Cell Tissue Res, 208: 135–142 (1980).PubMedGoogle Scholar
  52. 52.
    S. Kobayashi, K. Koshima, J. A. Olschowska and D. M. Jacobowitz, Vasoactive intestinal polypeptide immunoreactive and cholinergic nerves in the whole mount preparation of the major cerebral arteries of the rat, Histochemistry, 79: 377–381 (1983).PubMedGoogle Scholar
  53. 53.
    L.-I. Larson, L. Edvinsson, J. Fahrenkrug, R. Hakanson, C. Owman, O. B. Schaffolitzky de Muckadell and F. Sundler, Immunohistochemical localization of a vasodilator polypeptide (VIP) in cerebrovascular nerves, Brain Res, 113: 400–404 (1976).Google Scholar
  54. 54.
    M. Lindvall, J. Alumets, L. Edvinsson, J. Fahrenkrug, R. Hakanson, J. Hanko, C. Owman, O. B. Schaffolitzky de Muckadell and F. Sundler, Peptidergic (VIP) nerves in the mammalian choroid plexus, Neurosci. Lett, 9: 77–82 (1978).PubMedGoogle Scholar
  55. 55.
    F. Eckenstein and R. W. Baughman, Two types of cholinergic innervation in cortex, one co-localized with vasoactive intestinal polypeptide, Nature, 309: 153–155 (1984).PubMedGoogle Scholar
  56. 56.
    I. Loren, P. C. Emson, J. Fahrenkrug, A. Bjorklund, J. Alumets, R. Hakanson and F. Sundler, Distribution of vasoactive intestinal polypeptide in the rat and mouse brain, Neuroscience, 4: 1953–1976 (1979).PubMedGoogle Scholar
  57. 57.
    H. Hara, G. S. Hamil and D. M. Jacobowitz, Origin of cholinergic nerves to the rat major cerebral arteries: co-existence with vasoactive intestinal polypeptide, Brain Res. Bull, 14: 179–188 (1985).PubMedGoogle Scholar
  58. 58.
    I. L. Gibbins, J. E. Brayden and J. A. Bevan, Distribution and origins of VIP immunoreactive nerves in the cephalic circulation of the cat, Peptide, 5: 209–212 (1984).Google Scholar
  59. 59.
    J. J.-F. Lee, A. Saito and I. Berezin, Vasoactive intestinal polypeptidic-like substance: the potential transmitter for cerebral vasodilation, Science, 224: 898–901 (1984).PubMedGoogle Scholar
  60. 60.
    L. Edvinsson, B. B. Fredholm, E. Hamel, I. Janson and C. Verecchia, Perivascular peptides relax cerebral arteries concomitant with stimulation of cyclic adenosine monophosphate accumulation or release of an endothelium-derived relaxing factor in the cat, Neurosci. Lett, 58: 213–217 (1985).PubMedGoogle Scholar
  61. 61.
    Y. Suzuki, D. McMaster, K. Lderis and O. P. Rorstad, Characterization of the relaxant effect of vasoactive intestinal polypeptide (VIP) and PHI on isolated brain arteries, Brain Res, 322: 9–16 (1984).PubMedGoogle Scholar
  62. 62.
    J. McCulloch and L. Edvinsson, Cerebral circulatory and metabolic effects of vasoactive intestinal polypeptide, Am. J. Physiol, 238: H449 - H456 (1980).PubMedGoogle Scholar
  63. 63.
    D. A. Wilson, J. T. O’Neill, S. I. Said and R. J. Traystman, Vasoactive intestinal polypeptide and the canine cerebral circulation, Circ. Res, 48: 138–148 (1981).PubMedGoogle Scholar
  64. 64.
    J. McCulloch, P. A. T. Kelly, R. Uddman and L. Edvinsson, Functional role for vasoactive intestinal polypeptide in the caudate nucleus, Proc. Nat. Acad. Sci, 80: 1472–1476 (1983).PubMedCentralPubMedGoogle Scholar
  65. 65.
    J. McCulloch and P. A. T. Kelly, A functional role for vasoactive intestinal polypeptide in anterior cingulate gyrus, Nature, 304: 438–440 (1983).PubMedGoogle Scholar
  66. 66.
    B. Pemow, Substance P, Pharmacol. Rev, 35: 85–141 (1983).Google Scholar
  67. 67.
    H. Nawa, M. Dotcuchi, K. Igano, K. Inouye and S. Nakanishi, Substance K: a novel mammlian tachykinin that differs from substance P in its pharmacological profile, Life Sci, 34: 1153–1160 (1984).PubMedGoogle Scholar
  68. 68.
    L. Edvinsson, J. McCulloch and R. Uddman, Substance P: immunohistochemical localization and effect upon cat pial arteries in vitro and in situ, J. Physiol, 318: 251–258 (1981).PubMedCentralPubMedGoogle Scholar
  69. 69.
    L. Edvinsson, S. Rosenthal-Helgesen and R. Uddman, Substance P: localization, concentration and release in cerebral arteries, choroid plexus and dura mater, Cell Tissue Res, 234: 1–7 (1983).PubMedGoogle Scholar
  70. 70.
    R. Uddman, L. Edvinsson, C. Owman and F. Sundler, Perivascular substance P occurrence and distribution in mammalian pial vessels, J. Cereb. Blood Flow Metab, 1: 227–231 (1981).PubMedGoogle Scholar
  71. 71.
    K. Yamamoto, T. Matsuyama, S. Shioska, S. Inagaki, E. Senba, Y. Shimizu, I. Yshimoto, T. Hayakawa, M. Matsumoto and M. Tohyama, Overall distribution of substance P containing nerves in the wall of the cerebral arteries of the guinea pig and its origin, J. Comp. Neurol, 215: 421–426 (1983).PubMedGoogle Scholar
  72. 72.
    L.-Y. Liu-Chen, D. H. Han and M. A. Moskowitz, Pia arachnoid contains substance P originating from trigeminal neurons, Neuroscience, 9: 803–808 (1983).PubMedGoogle Scholar
  73. 73.
    R. Uddman, L. Edvinsson, R. Ekman, T. A. Kingman and J. McCulloch, Innervation of the feline cerebral vasculature by nerve fibers containing calcitonin gene-related peptide: trigeminal origin and co-existence with substance P, Neurosci. Lett, 62: 131–136 (1985).PubMedGoogle Scholar
  74. 74.
    M. A. Moskowitz, M. Brody and L.-Y. Liu-Chen, In vitro release of immunoreactive substance P from putative afferent nerve endings in bovine pia arachnoid, Neuroscience, 9: 804–814 (1983).Google Scholar
  75. 75.
    D. Ezra, F. R. M. Laurindo, J. Eimerl, C. Peck, G. Goldstein and G. Feuerstein, Tachykinin modulation of coronary blood flow, Eur. J. Pharmacol, 122: 135–138 (1986).PubMedGoogle Scholar
  76. 76.
    L. Edvinsson, J. McCulloch, S. Rosell and R. Uddman, Antagonism by DPro2, D-Trip7’9)-substance P of the cerebrovascular dilation induced by substance P, Acta Physiol. Scand, 116: 411–416 (1982).Google Scholar
  77. 77.
    L. Edvinsson and R. Uddman, Immunocyochemical localization and dilatory effect of substance P on human cerebral vessels, Brain Res, 232: 466–471 (1982).PubMedGoogle Scholar
  78. 78.
    F. Sundler, F. Brodin, E. Ekblad, R. Hakanson and R. Uddman, Sensory nerve fibers distribution of substance P, neurokinin A and calcitonin gene-related peptide, in: “Tachykinin Antagonists”, R. Hakanson and F. Sundler, eds., Elsevier, Amsterdam, pp 3–14 (1985).Google Scholar
  79. 79.
    H. Nawa, T. Hirose, H. Takashima, S. Inayama and S. Nakanisti, Nucleotide sequences of cloned cDNAs for two types of bovine brain susbtance P precursor, Nature, 306: 32–36 (1983).PubMedGoogle Scholar
  80. 80.
    H. R. Morris, M. Panico, T. Etienne, J. Tippins, S. I. Girgis and I. Maclntyre, Isolation and characterization of human calcitonin gene-related peptide, Nature, 308: 746–748 (1984).PubMedGoogle Scholar
  81. 81.
    S. G. Amara, V. Tonas, M. G. Rosenfeld, E. S. Ong and R. M. Evans, Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different products, Nature, 298: 240–244 (1982).PubMedGoogle Scholar
  82. 82.
    M. G. Rosenfeld, J. J. Mermod, S. G. Amara, L. W. Swanson, P. E. Sawchenko, J. Rivier, W. W. Vale and R. M. Evans, Productions of a novel neuropeptide encoded by the calcitonin gene via tissue specific RNA processing, Nature, 304: 129–135 (1983).PubMedGoogle Scholar
  83. 83.
    D. M. Jacobowitz and G. Skofitsch, Calcitonin gene-related peptide in the central nervous system, in: “Neural and Endocrine Peptides and Receptors”, T. W. Moody, ed., Plenum Press, New York, pp 247–288 (1986).Google Scholar
  84. 84.
    T. Lee, Y. Kawai, S. Shiosaka, K. Takami, H. Kiyama, C. J. Hillyar, S. Girgis, I. Maclntyre, P. C. Emson and M. Tohyama, Co-existence of calcitonin gene-related peptide and substance P-like peptide in single cells of the trigeminal ganglion of the rate: immunohistochemical analysis, Brain Res, 330: 194–196 (1985).PubMedGoogle Scholar
  85. 85.
    D. Ezra, F. R. M. Laurindo, D. S. Goldstein, R. E. Goldstein and G. Feuerstein, Calcitonin gene-related peptide: a potent modulator of coronary flow, Eur. J. Pharmacol, 137: 101–105 (1987).Google Scholar
  86. 86.
    J. Hanko, J. E. Hardebo, J. Kahrstrom, C. Owman and F. Sundler, Calcitonin gene-related peptide is present in mammalian cerebrovascular nerve fibers and dilates pial and peripheral arteries, Neurosci. Lett, 47: 91–95 (1985).Google Scholar
  87. 87.
    L. Edvinsson, J. McCulloch and R. Uddman, Feline cerebral veins and arteries comparison of autonomic innervation and vasomotor responses, J. Physiol, 325: 161–173 (1982).PubMedCentralPubMedGoogle Scholar
  88. 88.
    J. McCulloch, R. Uddman, T. A. Kingman and L. Edvinsson, Calcitonin gene-related peptide: functional role in cerebrovascular regulation, Proc. Nat. Acad. Sei., 83: 5731–5735 (1986).Google Scholar
  89. 89.
    N. Minamino, K. Kangaweka and M. Matsuo, Neuromedin C: a bombesin like peptide identified in porcine spinal cord, Biochem. Biophys. Res. Comm., 119: 14–20 (1984).Google Scholar
  90. 90.
    R. Uddman, L. Edvinsson, C. Owman and F. Sundler, Nerve fibers containing gastrin releasing peptide around pial vessels, J. Cereb. Blood Flow Metab, 3: 386–390 (1983).PubMedGoogle Scholar
  91. 91.
    C. Sumners, M. I. Phillips and E. M. Richards, Central pressor action of neurotensin in the conscious rat, Hypertension, 4: 888–893 (1982).PubMedGoogle Scholar
  92. 92.
    R. Quirion, F. Rioux, D. Regoli and S. St Pierre, Selective blockade of neurotensin induced coronary vessel constriction in perfused rat heart by a neurotensin analog, Eur. J. Pharmacol, 61: 309–312 (1980).PubMedGoogle Scholar
  93. 93.
    L. Jennes, W. E. Stumpf and P. W. Kalivas, Neurotensin: topographical distribution in rat brain by immunohistochemistry, J. Comp. Neurol, 210: 211–224 (1982).PubMedGoogle Scholar
  94. 94.
    V. Chan-Palay, Innervation of cerebral blood vessels by norepinephrine, indoleamine, substance P, and neurotensin fibers and the leptomeningeal indoleamine axons: their role in vasomotor activity and local alterations of brain blood composition, in: “Neurogenic Control of Brain Circulation”, C. Owman and L. Edvinsson, eds., Pergamon Press, Oxford, pp 39–54 (1977).Google Scholar
  95. 95.
    L.-I. Larsson and J. F. Rehfeld, Localization and molecular heterogeneity of cholecystokinin in the cerebral and peripheral nervous system, Brain Res, 165: 201–218 (1979).Google Scholar
  96. 96.
    I. Loren, J. Alumets, R. Hakanson and F. Sundler, Distribution of gastrin and CCK-like peptides in rat brain, Histochemistry, 59: 249–257 (1979).PubMedGoogle Scholar
  97. 97.
    S. H. C. Hendry, E. G. Jones and M. C. Beinfield, Cholecystokinin immunoreactive neurons in rat and monkey cerebral cortex make symmetric syrapses and have intimate associations with blood vessels, Proc. Nat. Acad. Sci, 80: 2400–2404 (1983).PubMedCentralPubMedGoogle Scholar
  98. 98.
    J. McCulloch, Perivascular nerve fibers and the cerebral circulation, Trends Neurosci, 7: 135–138 (1984).Google Scholar
  99. 99.
    J. McCulloch and P. A. T. Kelly, Effects of cholecystokinin octapeptide on pial arteriolar diameter, J. Cereb. Blood Flow Metab, 4: 625–628 (1984).PubMedGoogle Scholar
  100. 100.
    G. W. Pasternak, R. Goodman and S. H. Snyder, Endogenous morphine like factor in mammalian brain, Life Sci, 16: 1765–1769 (1975).PubMedGoogle Scholar
  101. 101.
    J. Huges, T. W. Smith, H. W. Kosterlitz, L. A. Fothergill, B. A. Morgan and H. R. Morris, Identification of two related pentapeptides from the brain with potent opiate agonist activity, Nature, 258: 577–579 (1975).Google Scholar
  102. 102.
    S. E. Kapadia and N. C. de Lanerolle, Immunohistochemical and electron microscopic demonstration of vascular innervation in the mammalian brain stem, Brain Res, 292: 33–40 (1984).PubMedGoogle Scholar
  103. 103.
    S. J. Peruoutka, M. A. Moskowitz and S. H. Snyder, Neurotransmitter receptor binding in bovine cerebral microvessels, Science, 208: 610–613 (1980).Google Scholar
  104. 104.
    J. Knoll, Neuronal peptide (enkephalin) receptors in the ear artery of the rabbit, Eur. J. Pharmacol, 39: 403–407 (1976).Google Scholar
  105. 105.
    J. H. Hanko and J. E. Hardebo, Enkephalin induced dilatation of pial arteries in vitro probably mediated by opiate receptors, Eur. J. Pharmacol, 51: 295–297 (1978).PubMedGoogle Scholar
  106. 106.
    T. M. Wong, A. Koo and C. H. Li, [3-endorphin vasodilation effect on the microcirculatory system of hamster cheek pouch, Int. J. Pept. Protein Res, 18: 420–422 (1981).PubMedGoogle Scholar
  107. 107.
    Y. Yamamoto, K. Hotta and T. Matsuda, Effect of methionine-enkephalin on the spontaneous electrical and mechanical activity of the smooth muscle of the rat portal vein, Life Sci, 34: 993–999 (1984).PubMedGoogle Scholar
  108. 108.
    G. Feuerstein and Z. Zukowska-Grojec, Effect of dermorphin and morphine on the symapthetic and the cardiovascular system of the pithed rat, Neuropeptides, 9: 139–150 (1987).PubMedGoogle Scholar
  109. 109.
    J. Eimerl and G. Feuerstein, The effect of µ, 8, x and e opioid receptor agonists on heart rate and blood pressure of the pithed rat, Neuropeptides, 8: 351–358 (1986).PubMedGoogle Scholar
  110. 110.
    M. Wahl, Effects of enkephalins morphine and naloxone on pial arteries during perivascular microapplication, J. Cereb. Blood Flow Metab., 5: 451–457 (1985).Google Scholar
  111. 111.
    L. Edvinsson and E. T. MacKenzie, Amine mechanisms in the cerebral circulation, Pharmacol. Rev, 28: 275–348 (1977).Google Scholar
  112. 112.
    W. Kuschinsky and M. Wahl, Local chemical and neurogenic regulation of cerebral vascular resistance, Physiol. Rev, 58: 656–689 (1978).PubMedGoogle Scholar
  113. 113.
    J. A. Bevan, J. Duckworth, I. Laher, M. A. Oriowo, G. A. McPherson and R. D. Bevan, Sympathetic control of cerebral arteries: specialization in receptor type, reserve, affinity and distribution, FASEB, 1: 193–198 (1987).Google Scholar
  114. 114.
    N. Toda and Y. Fujita, Responsiveness of isolated cerebral and peripheral arteries to serotonin, norepinephrine and transmural electrical stimulation, Circ. Res, 33: 98–104 (1973).Google Scholar
  115. 115.
    L. Edvinsson and C. H. Owman, Pharmacological characterization of adrenergic alpha and beta receptors mediating the vasomotor responses of cerebral arteries in vitro, Circ. Res, 35: 835–849 (1974).Google Scholar
  116. 116.
    I. C. Medgett and S. Z. Langer, Characterization of smooth muscle aadrenoceptors and of responses to electrical stimulation in the cat isolated perused middle cerebral artery, Naunyn Schmiedeberg’s Arch. Pharmacol, 323: 24–32 (1983).PubMedGoogle Scholar
  117. 117.
    M. Wahl, W. Kuschinsky, O. Bosse, J. Olesen, N. A. Lassen, D. H. Ingvar, J. Michaelis and K. Thurau, Effect of 1-norepinephrine on the diameter of pial arterioles and arteries in the cat, Circ. Res, 31: 248–256 (1972).PubMedGoogle Scholar
  118. 118.
    K. Ulrich, L. M. Auer and W. Kuschinsky, Cat pial venoconstriction by topical microapplication of norepinephrine, J. Cereb. Blood Flow Metabl, 2: 109–111 (1987).Google Scholar
  119. 119.
    P. M. Gross, A. M. Harper and G. M. Teasdale, Interactions of histamine with noradrenergic constrictory mechanisms in cat cerebral arteries and vein, Can. J. Physiol. Pharmacol, 61: 756–763 (1983).Google Scholar
  120. 120.
    M. Wahl, W. Kuschinsky, O. Bosse and A. Neiss, Micropuncture evaluation of 13-receptors in pial arteries of cats, Pflügers Arch, 348: 293–303 (1974).PubMedGoogle Scholar
  121. 121.
    W. Kuschinsky and M. Wahl, Alpha receptor stimulation by endogenous and exogenous norepinephrine and its blockade by phentolamine in pial arteries of the cat, Circ. Res, 37: 168–174 (1975).PubMedGoogle Scholar
  122. 122.
    W. Kuschinsky and M. Wahl, Interaction between perivascular norepinephrine and potassium or osmolarity on pial arteries of cats, Microuasc. Res, 14: 173–1980 (1977).Google Scholar
  123. 123.
    L. M. Auer, B. B. Johansson and S. Lund, Reaction of pial arteries and veins to sympathetic stimulation in the cat, Stroke, 12: 528–531 (1981).PubMedGoogle Scholar
  124. 124.
    D. D. Heistad, M. L. Marcus, S. Sandberg and F. M. Abboud, Effect of sympathetic nerve stimulation on cerebral blood flow and on large cerebral arteries of dogs, Circ. Res, 41: 342–350 (1977).PubMedGoogle Scholar
  125. 125.
    M. L. Marcus and D. D. Heistad, Effects of sympathetic nerves on cerebral blood flow in awake dogs, Am. J. Physiol, 236: H549 - H553 (1979).PubMedGoogle Scholar
  126. 126.
    J. F. Vatner, L. L. Priano, J. D. Rutherford and W. T. Manders, Sympathetic regulation of the cerebral circulation by the carotid chemoreceptors reflex, Am. J. Physiol, 238: H597 - H598 (1980).Google Scholar
  127. 127.
    M. Beausang Linder and A. Bill, Cerebral circulation in acute arterial hypertension–protective effects of sympathetic nervous activity, Acta Physiol. Scand, 111: 193–199 (1981).PubMedGoogle Scholar
  128. 128.
    A. Bill and J. Linder, Sympathetic control of cerebral blood flow in acute arterial hypertension, Acta Physiol. Scand, 96: 114–121 (1976).PubMedGoogle Scholar
  129. 129.
    L. Edvinsson, C. H. Owman and B. K. Siesjö, Physiological role of cerebrovascular sympathetic nerves in the autoregulation of cerebral blood flow, Brain Res, 117: 519–523 (1976).PubMedGoogle Scholar
  130. 130.
    D. D. Heistad and M. L. Marcus, Effect of sympathetic stimulation on the permeability of the blood brain barrier to albumin during acute hypertension in cats, Circ. Res, 45: 331–338 (1979).PubMedGoogle Scholar
  131. 131.
    E. T. MacKenzie, A. P. McGeorge, D. I. Graham, W. Fitch, L. Edvinsson and A. M. Harper, Effect of increasing arterial pressure on cerebral blood flow in the baboon: influence of the sympathetic nervous system, Pflügers Arch, 379: 157–163 (1979).Google Scholar
  132. 132.
    V. Chan-Palay, Serotonin axons in the supra and sub-ependymal plexuses and in the leptomeninges; their role in local alterations of cerbrospinal fluid and vasomotor activity, Brain Res, 132: 103–130 (1976).Google Scholar
  133. 133.
    B. Scatton, L. Edvinsson, A. Degeueurce, D. Duverger, R. L’Heurex and E. T. MacKenzie, Histochemical and biochemical evidence for perivascular 5-hydroxytryptamine nerves in cerebral blood vessels, J. Cereb. Blood Flow Metab, 3 (Supp 1): 5230–5231 (1983).Google Scholar
  134. 134.
    C. Forster and E. T. Whalley, Analysis of the 5-hydroxytryptamine induced contraction of the human basilar arterial strip compared with the rat aortic strip in vitro, Naunyn Schmiedebergs Arch. PharmacoL, 319: 1217 (1982).Google Scholar
  135. 135.
    J. E. Hardebo, L. Edvinsson, C. H. Owman and N. A. Svendgaard, Potentiation and antagonism of serotonin effect on intracranial and extracranial vessels, Neurology, 28: 64–70 (1978).PubMedGoogle Scholar
  136. 136.
    L. Edvinsson, J. E. Hardebo and C. H. Owman, Pharmacological analysis of 5-hydroxytryptamine receptors in isolated intracranial and extracranial vessels of cat and man, Circ. Res, 42: 143–151 (1978).PubMedGoogle Scholar
  137. 137.
    L. M. Auer, I. Sayama, K. Haselsberger and K. Leber, Reaction of pial vessels and cerebral blood volume to intravenous methohexital and to topical serotonin, J. Cereb. Blood Flow Metab, 3 (Suppl 1): S568 - S569 (1983).Google Scholar
  138. 138.
    A. M. Harper and E. T. MacKenzie, Effects of 5-hydroxytryptamine on pial arteriolar calibre in anesthetized cats, J. PhysioL, 271: 735–746 (1977).PubMedCentralPubMedGoogle Scholar
  139. 139.
    L. Edvinsson, J. E. Hardebo, E. T. MacKenzie and M. Stewart, Dual action of serotonin on pial arterioles in situ and the effect of propranolol on the response, Blood Vessels, 14: 366–371 (1977).PubMedGoogle Scholar
  140. 140.
    C. R. Calcutt, The role of histamine in the brain, Gen. Pharmacol, 7: 15–26 (1976).PubMedGoogle Scholar
  141. 141.
    J. C. Schwartz, Histaminergic mechanisms in the brain, Ann. Rev. Pharmacol. Toxicol, 17: 325–340 (1977).Google Scholar
  142. 142.
    P. M. Gross, Cerebral histamine: indications for neural and vascular regulation, J. Cereb. Blood Flow Metab, 2: 3–23 (1982).PubMedGoogle Scholar
  143. 143.
    L. Edvinsson, C. H. Owman and N. O. Sjoberg, Autonomic nerves, mast cels and amine receptors in human brain vessels; a histochemical and pharmacological study, Brain Res, 115: 377–393 (1976).PubMedGoogle Scholar
  144. 144.
    A.-L. Ronnberg, L. Edvinsson, L. I. Larsson, K. C. Nielsen and C. H. Owman, Regional variation in the presence of mast cells in the mammalian brain, Agents and Actions, 3: 191–192 (1973).PubMedGoogle Scholar
  145. 145.
    L. Edvinsson, P. M. Gross and A. Mohamed, Characterization of histamine receptors in cat cerebral arteries in vitro and in situ, J. Pharmacol. Exp. Ther, 225: 168–175 (1983).PubMedGoogle Scholar
  146. 146.
    P. M. Gross, A. M. Harper and G. M. Teasdale, Cerebral circulation and histamine: 2. Responses of pial veins and arterioles to receptor agonists, J. Cereb. Blood Flow Metab, 1: 219–225 (1981).PubMedGoogle Scholar
  147. 147.
    M. Wahl and W. Kuschinsky, The dilating effect of histamine on pial arteries of cats and its mediation by H2-receptors, Circ. Res, 44: 161165 (1979).Google Scholar
  148. 148.
    L. Edvinsson and C. H. Owman, A pharmacologic comparison of histamine receptors in isolated extracranial and intracranial arteries in vitro, Neurology, 25: 271–276 (1975).PubMedGoogle Scholar
  149. 149.
    P. M. Gross, G. M. Teasdale, D. I. Graham, W. J. Angerson and A. M. Harper, Intra-arterial histamine increases blood-brain barrier transport in rats, Am. J. Physiol, 243: H307 - H317 (1982).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • G. Feuerstein
    • 1
  1. 1.Department of NeurologyUniformed Services University of the Health SciencesBethesdaUSA

Personalised recommendations