Actin Structure in Fibroblasts

Its Possible Role in Transformation and Tumorigenesis
  • Patricia F. Maness


Striking changes in actin cytoarchitecture occur when cultured fibroblasts become oncogenically transformed by tumor viruses. These changes were first observed by electron and immunofluorescence miscroscopy as a loss of large bundles of actin microfilaments called “stress fibers.” Recent technical innovations for visualizing the cytoskeleton have revealed that actin structure in normal fibroblasts is much more complex than was originally supposed and that the changes in actin structure that occur on transformation, collectively referred to as “the actin transformation,” are manifold. In cells transformed by certain DNA- and RNA-containing tumor viruses, these actin alterations have been shown to be the consequence of specific viral genes that simultaneously set in motion a variety of pleiotypic changes in the infected cell and that are also required for tumorigenicity. Several of these transforming genes code for proteins that may directly induce transformation and tumorigenesis. Considerable progress has been made in recent years toward the identification of these proteins. Although the transforming proteins encoded by different viruses are distinct, they share certain properties that may be important in bringing about the actin transformation. Furthermore, since transformation induced by these distinct tumor viruses results in a more or less common actin phenotype in the infected cell, it is likely that the actin transformation contributes to the common features of transformation and tumorigenicity. Indeed, a wealth of studies have accumulated that show correlations among the actin transformation, tumorigenicity, and individual transformation parameters, some of which are related to growth control and others of which are not obviously growth-related. Nonetheless, a cause-and-effect relationship has not been demonstrated between the actin transformation and any of these parameters.


Stress Fiber Simian Virus Actin Structure Actin Stress Fiber Rous Sarcoma Virus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abercrombie, M., and Dunn, G. A., 1975, Adhesions of fibroblasts to substratum during contact interference observed by interference reflexion microscopy, Exp. Cell Res. 92: 57.CrossRefGoogle Scholar
  2. Abercrombie, M., Heaysman, J. E. M., and Pegrum, S. M., 1971, The locomotion of fibroblasts in culture. IV. Electron microscopy of the leading lamella, Exp. Cell Res. 67: 359.CrossRefGoogle Scholar
  3. Adelstein, R. S., Scordilis, S. P., and Trotter, J. A., 1979, The cytoskeleton and cell movement: General considerations, Methods achiev. Exp. Pathol. 8: 1.Google Scholar
  4. Ali, I. U., and Hynes, R. O., 1978, Effect of LETS glycoprotein on cell motility, Cell 14: 439.CrossRefGoogle Scholar
  5. Ali, I. U., Mautner, V., Lanza, R., and Hynes, R. O., 1977, Restoration of normal morphology, adhesion, and cytoskeleton in transformed cells by addition of a transformation-sensitive surface protein, Cell 11: 115.CrossRefGoogle Scholar
  6. Ambros, V. R., Chen, L. B., and Buchanan, J. M., 1975, Surface ruffles as markers for studies of cell transformation by Rous sarcoma virus, Proc. Natl, Acad. Sci. U.S.A. 72: 3144.CrossRefGoogle Scholar
  7. Anderson, P. J., 1979, The structure and amount of actin in IMR-90 fibroblasts, Biochem. J. 179: 425.Google Scholar
  8. Ash, J. F., Vogt, P. K., and Singer, S. J., 1976, Reversion from transformed to normal phenotype by inhibition of protein synthesis in rat kidney cells infected with a temperature-sensitive mutant of Rous sarcoma virus, Proc. Natl. Acad. Sci. U.S.A. 73: 3603.CrossRefGoogle Scholar
  9. Barak, L. S., Yocum, R. R., Nothnagel, E. A., and Webb, W. E., 1980, Fluorescence staining of the actin cytoskeleton in living cells with 7-nitrobenz-2-oxa-1, 3-diazole-phallacidin, Proc. Natl. Acad. Sci. U.S.A. 77: 980.CrossRefGoogle Scholar
  10. Barrett, J. C., and Ts’o, P. O. P., 1978, Evidence for the progressive nature of neoplastic transformation in vitro, Proc. Natl. Acad. Sci. U.S.A. 75: 3761.CrossRefGoogle Scholar
  11. Barrett, J. C., Crawford, B. D., Mixter, L. O., Schechtman, L. M., Ts’o, P. O. P., and Pollack, R., 1979, Correlation of in vitro growth properties and tumorigenicity of Syrian hamster cell lines, Cancer Res. 39: 1504.Google Scholar
  12. Becker, D., Kurth, R., Critchley, D., Friis, R., and Bauer, H., 1977, Distinguishable transformation-defective phenotypes among temperative-sensitive mutants of Rous sarcoma virus, J. Virol. 21: 1042.Google Scholar
  13. Begg, D. A., Rodewald, R., and Rebhun, L. I., 1978, The visualization of actin filament polarity in thin sections, J. Cell Biol. 79: 846.CrossRefGoogle Scholar
  14. Benecke, B. J., Ben-Ze’ev, A., and Penman, S., 1978, The control of mRNA production, translation and turnover in suspended and reattached anchorage-dependent fibroblasts, Cell 14: 931.CrossRefGoogle Scholar
  15. Beug, H., Peters, J. H., and Graf, T., 1976, Expression of virus specific morphological cell transformation induced in enucleated cells, Z. Naturforsch. 31c: 766.Google Scholar
  16. Beug, H., Claviez, M., Jockusch, B. M., and Graf, T., 1978, Differential expression of Rous sarcoma virus-specific transformation parameters in enucleated cells,f Cell 14: 843.CrossRefGoogle Scholar
  17. Bouck, N., Beales, N., Shenk, T., Berg, P., and DiMayorca, G., 1978, New region of the simian virus 40 genome required for efficient viral transformation, Proc. Natl. Acad. Sci. U.S.A. 75: 2473.CrossRefGoogle Scholar
  18. Bragina, E. E., Vasiliev, J. M., and Gelfand, I. M., 1976, Formation of bundles of microfilaments during spreading of fibroblasts on the substrate, Exp. Cell Res. 97: 241.CrossRefGoogle Scholar
  19. Bray, D., and Thomas, C., 1975, The actin content of fibroblasts, Biochem. J. 147: 221.Google Scholar
  20. Bray, D., and Thomas, C., 1976, Unpolymerized actin in fibroblasts and brain, J. Mol. Biol. 105: 527.CrossRefGoogle Scholar
  21. Brugge, J. S., and Butel, J. S., 1975, Role of simian virus 40 gene A function in maintenance of transformation, J. Virol. 15: 619.Google Scholar
  22. Brugge, J. S., and Erikson, R. L., 1977, Identification of a transformation-specific antigen induced by an avian sarcoma virus, Nature (London) 269: 346.CrossRefGoogle Scholar
  23. Buckley, I. K., 1974, Subcellular motility: A correlated light and electron microscopic study using cultured cells, Tissue Cell 6: 1.CrossRefGoogle Scholar
  24. Buckley, I. K., 1975, Three-dimensional fine structure of cultured cells: Possible implications for subcellular motility, Tissue Cell 7: 51.CrossRefGoogle Scholar
  25. Buckley, I. K., and Porter, K. R., 1967, Cytoplasmic fibrils in living cultured cells, Protoplasma 64: 349.CrossRefGoogle Scholar
  26. Burn, J. G., Dreyfuss, G., Penman, S., and Buchanan, J. M., 1980, Association of the src gene product of Rous sarcoma virus with cytoskeletal structures of chicken embryo fibroblasts, Proc. Natl. Acad. Sci. U.S.A. 77: 3484.CrossRefGoogle Scholar
  27. Burridge, K., and Feramisco, J. R., 1980, Microinjection and localization of a 130K protein in living fibroblasts: A relationship to actin and fibronectin, Cell 16: 587.CrossRefGoogle Scholar
  28. Clarke, M., and Spudich, J. A., 1977, Nonmuscle contractile proteins: The role of actin and myosin in cell motility and shape determination, Annu. Rev. Biochem. 46: 797.CrossRefGoogle Scholar
  29. Collett, M. S., and Erikson, R. L., 1978, Protein kinase activity associated with the avian sarcoma virus src gene product, Proc. Natl. Acad. Sci. U.S.A. 75: 2021.CrossRefGoogle Scholar
  30. Collett, M. S., Brugge, J. S., Erikson, R. L., Lau, A. F., Krzyzek, R. A., and Faras, A. J., 1979, The src gene product of transformed and morphologically reverted ASV-infected mammalian cells, Nature (London) 281: 195.CrossRefGoogle Scholar
  31. Collett, M. S., Purchio, A. F., and Erikson, R. L., 1980, Avian sarcoma virus-transforming protein, pp60sre, shows protein kinase activity specific for tyrosine, Nature (London) 285: 167.CrossRefGoogle Scholar
  32. Crawford, L. V., Cole, C. N., Smith, A. E., Paucha, E., Tegtmeyer, P., Rundell, K., and Berg, P., 1978, Organization and expression of early genes of simian virus 40, Proc. Natl. Acad. Sci. U.S.A. 75: 117.CrossRefGoogle Scholar
  33. Culp, L. A., and Buniel, J. F., 1976, Substrate-attached serum and cell proteins in adhesion of mouse fibroblasts, J. Cell. Physiol. 88: 89.CrossRefGoogle Scholar
  34. Culp, L. A., Grimes, W. J., and Black, P. H., 1971a, Contact-inhibited revertant cell lines isolated from SV40-transformed cells. I. Biologic, virologic, and chemical properties, J. Cell Biol. 50: 682.CrossRefGoogle Scholar
  35. Culp, L. A., Grimes, W. J., and Black, P. H., 1971b, Contact-inhibited revertant cell lines isolated from SV40-transformed cells. II. Ultrastructural study, J. Cell Biol. 50: 691.CrossRefGoogle Scholar
  36. Culp, L. A., Grimes, W. J., and Black, P. H., 1973, Contact-inhibited revertant cell lines isolated from SV40-transformed cells. IV. Microfilament distribution and cell shape in untransformed, transformed, and revertant Balbc 3T3 cells, J. Cell Biol. 56: 412.CrossRefGoogle Scholar
  37. Deppert, W., 1979, Simian virus 40 T and U antigens: Immunological characterizations and localization in different nuclear subfractions of simian virus 40-transformed cells, J. Virol. 31: 576.Google Scholar
  38. Dermer, G. B., Lue, J., and Neustein, H. B., 1974, Comparison of surface material, cytoplasmic filaments, and intercellular junctions from untransformed and two mouse sarcoma virus-transformed cell lines, Cancer Res. 34: 31.Google Scholar
  39. DiMayorca, G., Callender, J., Marin, G., and Giordano, R., 1969, Temperature-sensitive mutants of polyoma virus, Virology 38: 126.CrossRefGoogle Scholar
  40. Eckhart, W., 1969, Complementation and transformation by temperature-sensitive mutants of polyoma virus, Virology 38: 120.CrossRefGoogle Scholar
  41. Eckhart, W., Hutchinson, M. A., and Hunter, T., 1979, An activity phosphorylating tyrosine in polyoma T antigen immunoprecipitates, Cell 18: 925.CrossRefGoogle Scholar
  42. Edelman, G. M., and Yahara, I., 1976, Temperature-sensitive changes in surface modulating assemblies of fibroblasts transformed by mutants of Rous sarcoma virus, Proc. Natl. Acad. Sci. U.S.A. 73: 2047.CrossRefGoogle Scholar
  43. Erikson, E., Collett, M. S., and Erikson, R. L., 1978, In vitro synthesis of a functional avian sarcoma virus transforming-gene product, Nature (London) 274: 919.Google Scholar
  44. Erikson, R. L., Collett, M. S., Erikson, E., and Purchio, A. F., 1979, Evidence that the avian sarcoma virus transforming gene product is a cyclic AMP-independent protein kinase, Proc. Natl. Acad. Sci. U.S.A. 76: 6260.CrossRefGoogle Scholar
  45. Fagraeus, A., Tyrell, D. L. J., Norberg, R., and Norrby, E., 1978, Actin filaments in paramyxovirus-infected human fibroblasts studied by indirect immunofluorescence, Arch. Virol. 57: 291.CrossRefGoogle Scholar
  46. Farmer, S. R., Ben-Ze’ev, A., Benecke, B. J., and Penman, S., 1978, Altered translatability of messenger RNA from suspended anchorage-dependent fibroblasts: Reversal upon cell attachment to a surface, Cell 15: 627.CrossRefGoogle Scholar
  47. Feramisco, J. R., 1979, Microinjection of fluorescently-labeled a-actinin into living fibroblasts, Proc. Natl. Acad. Sci. U.S.A. 76: 3967.CrossRefGoogle Scholar
  48. Feramisco, J. R., and Burridge, K., 1980, A rapid purification of a-actinin, filamin, and a 130,000-dalton protein from smooth muscle, J. Biol. Chem. 255: 1194.Google Scholar
  49. Feunteun, J., Sompayrac, L., Fluck, M., and Benjamin, T., 1976, Localization of gene functions in polyoma virus DNA, Proc. Natl. Acad. Sci. U.S.A. 73: 4169.CrossRefGoogle Scholar
  50. Fiers, W., Contreras, R., Haegerman, G., Rogiers, R., Van de Voorde, A., VanHeuverswyn, H., Van Herreweghe, J., Volckaert, G., and Ysebaert, M., 1978, Complete nucleotide sequence of SV40 DNA, Nature (London) 273: 113.CrossRefGoogle Scholar
  51. Fine, R. E., and Taylor, L., 1976, Decreased actin and tubulin synthesis in 3T3 cells after transformation by SV40 virus, Exp. Cell Res. 102: 162.CrossRefGoogle Scholar
  52. Fluck, M. M., and Benjamin, T. L., 1979, Comparisons of two early gene functions essential for transformation in polyoma virus and SV40, Virology 96: 205.CrossRefGoogle Scholar
  53. Folkman, J., and Moscona, A., 1978, Role of cell shape in growth control, Nature (London) 273: 345.CrossRefGoogle Scholar
  54. Freedman, V. H., and Shin, S., 1975, Cellular tumorigenicity in nude mice: Correlation with cell growth in semi-solid medium, Cell 3: 355.CrossRefGoogle Scholar
  55. Fujiwara, K., and Pollard, T. D., 1978, Simultaneous localization of myosin and tubulin in human tissue culture cells by double antibody staining, J. Cell Biol. 77: 182.CrossRefGoogle Scholar
  56. Gabbiani, G., Csank-Brassert, J., Schneeberger, J. C., Kaparci, Y., Trenchev, P., and Holborow, E. J., 1976, Contractile proteins in human cancer cells, Am. J. Pathol. 83: 457.Google Scholar
  57. Garrels, J. I., and Gibson, W., 1976, Identification and characterization of multiple forms of actin, Cell 9: 793.CrossRefGoogle Scholar
  58. Garrels, J. I., and Hunter, T., 1979, Post-translational modification of actins synthesized in vitro, Biochim. Biophys. Acta 564: 517.CrossRefGoogle Scholar
  59. Geiger, B., 1979, A 130K protein from chicken gizzard: Its localization at the termini of micro-filament bundles in cultured chicken cells, Cell 18: 19.CrossRefGoogle Scholar
  60. Gionti, E., Kryceve-Martiniere, C., Aupoix, M. C., and Calothy, G., 1980, Phenotypic hereogeneity among temperature-sensitive mutants of Rous sarcoma virus: Studies with inhibitors of protein synthesis, Virology 100: 219.CrossRefGoogle Scholar
  61. Goldman, R. D., Chang, C., and Williams, J. F., 1975a, Properties and behavior of hamster embryo cells transformed by human adenovirus type 5, Cold Spring Harbor Symp. Quant. Biol. 34: 601.Google Scholar
  62. Goldman, R. D., Lazarides, E., Pollack, R., and Weber, K., 1975b, The distribution of actin in nonmuscle cells, Exp. Cell Res. 90: 333.CrossRefGoogle Scholar
  63. Goldman, R. D., Yerna, M.J., and Schloss, J. A., 1976, Localization and organization of microfilaments and related proteins in normal and virus-transformed cells, J. Supramol. Struct. 5: 155.CrossRefGoogle Scholar
  64. Gordon, W. E., III, and Bushnell, A., 1979, Immunofluorescent and ultrastructural studies of polygonal microfilament networks in respreading nonmuscle cells, Exp. Cell Res. 120: 335.CrossRefGoogle Scholar
  65. Graessmann, A., Graessmann, M., Tjian, R., and Topp, W. C., 1980, Simian virus 40 small-t protein is required for loss of actin cable networks in rat cells, J. Virol. 33: 1182.Google Scholar
  66. Grazzi, E., Ferri, A., Lanzara, V., Magri, E., and Zaccarini, M., 1980, G-actin modified by plasma membrane interaction polymerizes only in the presence of filamentous myosin, FEBS Lett. 112: 67.CrossRefGoogle Scholar
  67. Griffin, J. E., Spangler, G., and Livington, D. M., 1979, Protein kinase activity associated with SV40 T-antigen, Proc. Natl. Acad. Sci. U.S.A. 76: 2610.CrossRefGoogle Scholar
  68. Griffith, B. E., and Maddock, C., 1979, New classes of viable deletion mutants in the early region of polyoma virus, J. Virol. 31: 645.Google Scholar
  69. Gruenstein, E., Rich, A., and Weihing, R. R., 1975, Actin associated with membranes from 3T3 mouse fibroblast and Hela cells, J. Cell Biol. 64: 223.CrossRefGoogle Scholar
  70. Hanafusa, H., 1977, Cell transformation by RNA tumor viruses, Compr. Virol. 10: 401.Google Scholar
  71. Hard, G. C., and Toh, B. H., 1977, Immunofluorescent characterization of rat kidney tumors according to the distribution of actin as revealed by specific antiactin antibody, Cancer Res. 37: 1618.Google Scholar
  72. Heath, J. P., and Dunn, G. A., 1978, Cell to substratum contacts of chick fibroblasts and their relation to the microfilament system: A correlated interference-reflexion and high-voltage electron microscopic study, J. Cell Sci. 29: 197.Google Scholar
  73. Heaysman, J. E. M., 1978, Contact inhibition of locomotion: A reappraisal, Int. Rev. Cytol. 55: 49.CrossRefGoogle Scholar
  74. Heaysman, J. E. M., and Pegrum, S. M., 1973, Early contacts between fibroblasts, Exp. Cell Res. 78: 71.CrossRefGoogle Scholar
  75. Heggeness, M. H., and Ash, J. F., 1977, Use of avidin-biotin complex for the localization of actin and myosin with fluorescence microscopy, J. Cell Biol. 73: 783.CrossRefGoogle Scholar
  76. Heggeness, M. H., Wang, K., and Singer, S. J., 1977, Intracellular distributions of mechanochemical proteins in cultured fibroblasts, Proc. Natl. Acad. Sci. U.S.A. 74: 3883.CrossRefGoogle Scholar
  77. Heggeness, M. H., Ash, J. F., and Singer, S. J., 1978, Transmembrane linkage of fibronectin to intracellular actin-containing filaments in cultured human fibroblasts, Ann. N. Y. Acad. Sci. 312: 414.CrossRefGoogle Scholar
  78. Henderson, D., and Weber, K., 1979, Three-dimensional organization of microfilaments and microtubules in the cytoskeleton, Exp. Cell Res. 124: 301.CrossRefGoogle Scholar
  79. Herman, I. M., and Pollard, T. D., 1979, Comparison of purified anti-actin and fluorescent-heavy meromyosin staining patterns in dividing cells, J. Cell Biol. 80: 509.CrossRefGoogle Scholar
  80. Hunter, T., and Sefton, B. M., 1980, Transforming gene product of Rous sarcoma virus phosphorylates tyrosine, Proc. Natl. Acad. Sci. U.S.A. 77: 1311.CrossRefGoogle Scholar
  81. Hutchinson, M. A., Hunter, T., and Eckhart, W., 1978, Characterization of T antigens in polyoma-infected and transformed cells, Cell 15: 65.CrossRefGoogle Scholar
  82. Huxley, H. E., 1963, Electron microscopic studies on the structure of natural and synthetic protein filaments from striated muscles, J. Mol. Biol. 3: 281.CrossRefGoogle Scholar
  83. Hynes, R. O., 1973, Alteration of cell surface proteins by viral transformation and by proteolysis, Proc. Natl. Acad. Sci. U.S.A. 70: 3170.CrossRefGoogle Scholar
  84. Hynes, R. O., and Destree, A. T., 1978, Relationships between fibronectin (LETS protein) and actin, Cell 15: 875.CrossRefGoogle Scholar
  85. Hynes, R. O., Destree, A. T., Perkins, M. E., and Wagner, D. D., 1979, Cell surface fibronectin and oncogenic transformation, J. Supraraol. Struct. 11: 95.CrossRefGoogle Scholar
  86. Isenberg, G., Rathke, P. C., Hülsmann, N., Franke, W. E., and Wohlfarth-Bottermann, E., 1976, Cytoplasmic actomyosin fibrils in tissue culture cells: Direct proof of contractility by visualization of ATP-induced contraction in fibrils isolated by laser microbeam dissection, Cell Tissue Res. 166: 427.CrossRefGoogle Scholar
  87. Ito, Y., 1979, The polyoma virus-specific 55,000-dalton protein isolated from plasma membrane of productively-infected cells is virus coded, Virology 98: 261.CrossRefGoogle Scholar
  88. Ito, Y., Brocklehurst, J., and Dulbecco, R., 1977a, Virus-specific proteins in the plasma membrane of cells lytically infected or transformed by polyoma virus, Proc. Natl. Acad. Sci. U.S.A. 74: 4666.CrossRefGoogle Scholar
  89. Ito, Y., Spurr, N., and Dulbecco, R., 1977b, Characterization of polyoma virus T antigen, Proc. Natl. Acad. Sci. U.S.A. 74: 1289.Google Scholar
  90. Izzard, C. S., and Lochner, L. R., 1976, Cell-to-substrate contacts in living fibroblasts: An interference reflexion study with an evaluation of the technique, J. Cell Sci. 21: 129.Google Scholar
  91. Jay, G., Shiu, R. P. C., Jay, F. T., Levine, A. S., and Pastan, I., 1978, Identification of a transformation-specific protein induced by a Rous sarcoma virus, Cell 13: 527.CrossRefGoogle Scholar
  92. Johnson, G. S., and Pastan, I., 1972, Cyclic AMP increases the adhesion of fibroblasts to substratum, Nature (London) New Biol. 236: 247.CrossRefGoogle Scholar
  93. Johnson, G. S., Friedman, R. M., and Pastan, I., 1971, Restoration of several morphological characteristics of normal fibroblasts in sarcoma cells treated with adenosine-3’:5’-cyclic monophosphate and its derivatives, Proc. Natl. Acad. Sci. U.S.A. 68: 425.CrossRefGoogle Scholar
  94. Jones, P. A., Laug, W. E., Gardner, A., Nye, C. A., Fink, L. M., and Benedict, W. F., 1976, In vitro correlates of transformation in C3H/10T’ clone 8 mouse cells, Cancer Res. 36:2863.Google Scholar
  95. Karess, R. E., Hayward, W. S., and Hanafusa, H., 1979, Cellular information in the genome of recovered avian sarcoma virus directs the synthesis of transforming protein, Proc. Natl. Acad. Sci. U.S.A. 67:3154.CrossRefGoogle Scholar
  96. Karsenti, E., Guilbert, B., Bornens, M., Avrameas, S., Whalen, R., and Pantaloni, D., 1978, Detection of tubulin and actin in various cell lines by an immunoperoxidase technique, J. Histochem. Cytochem. 26; 934.CrossRefGoogle Scholar
  97. Kawai, S., and Hanafusa, H., 1971, The effects of reciprocal changes in temperature on the transformed state of cells infected with a Rous sarcoma virus mutant, Virology 46: 470.CrossRefGoogle Scholar
  98. Kawamura, M., Masaki, T., Nonomura, Y., and Maruyama, K., 1970, An electron microscopic study of the action of the 6S component of a-actinin on F-actin, J. Biochem. 68: 577.Google Scholar
  99. Klarlund, T. K., and Forchhammer, J., 1980, Temperature-sensitive tumorigenicity of cells trans- formed by a mutant of Moloney sarcoma virus, Proc. Natl. Acad. Sci. U.S.A. 77: 1501.CrossRefGoogle Scholar
  100. Klein, G., 1979, Lymphoma development in mice and humans: Diversity of initiation is followed by convergent cytogenetic evolution, Proc. Natl. Acad. Sci. U.S.A. 76: 2442.CrossRefGoogle Scholar
  101. Kopelovich, L., Conlon, S., and Pollack, R., 1977, Defective organization of actin in cultured skin fibroblasts from patients with inherited adenocarcinoma, Proc. Natl. Acad. Sci. U.S.A. 74: 3019.CrossRefGoogle Scholar
  102. Kreis, T. E., Winterhalter, K. H., and Birchmeier, W., 1979, In vivo distribution and turnover of fluorescently-labeled actin microinjected into human fibroblasts, Proc. Natl. Acad. Sci. U.S.A. 76: 3814.CrossRefGoogle Scholar
  103. Kupfer, A., Gani, V., Jimenez, J. S., and Shaltiel, S., 1979, Affinity labeling of the catalytic subunit of cyclip AMP-dependent protein kinase by Na-tosyl-L-lysine chloromethyl ketone, J. Biol. Chem. 76: 3073.Google Scholar
  104. Lania, L., Griffiths, M., Cooke, B., Ityo, Y., and Fried, M., 1979, Untransformed rat cells containing free and integrated DNA of a polyoma nontransforming (Hr-t) mutant, Cell 18: 793.CrossRefGoogle Scholar
  105. Lassam, N. J., Bayley, S. T., and Graham, F. L., 1979a, Tumor antigens of human Ad5 in transformed cells and in cells infected with transformation-defective host-range mutants, Cell 18: 781.CrossRefGoogle Scholar
  106. Lassam, N. J., Bayley, S. T., Graham, F. L., and Branton, P. E., 1979b, Immunoprecipitation of protein kinase activity from adenovirus 5-infected cells using antiserum directed against tumour antigens, Nature (London) 277: 241.CrossRefGoogle Scholar
  107. Lazarides, E., 1975, Tropomyosin antibody: The specific localization of tropomyosin in nonmuscle cells, J. Cell Biol. 65: 549.CrossRefGoogle Scholar
  108. Lazarides, E., 1976, Actin, a-actinin, and tropomyosin interaction in the structural organization of actin filaments in nonmuscle cells, J. Cell Biol. 68: 202.CrossRefGoogle Scholar
  109. Lazarides, E., and Burridge, K., 1975, a-Actinin immunofluorescent localization of a muscle structural protein in nonmuscle cells, Cell 6: 289.Google Scholar
  110. Lazarides, E., and Weber, K., 1974, Actin antibody: The specific localization of actin filaments in non-muscle cells, Proc. Natl. Acad. Sci. U.S.A. 71: 2268.CrossRefGoogle Scholar
  111. Lee, W.-H., Bister, K., Pawson, A., Robins, T., Moscovici, C., and Duesberg, P. H., 1980, Fujinami sarcoma virus: An avian. RNA tumor virus with a unique transforming gene, Proc. Natl. Acad. Sci. U.S.A. 77: 2018.CrossRefGoogle Scholar
  112. Lenk, R., Ransom, L., Kaufmann, Y., and Penman, S., 1977, A cytoskeletal structure with associated polyribosomes obtained from Hela cells, Cell 10: 67.CrossRefGoogle Scholar
  113. Levinson, A. D., and Levine, A. J., 1977a, The isolation and identification of the adenovirus group C tumor antigens, Virology 76: 1.CrossRefGoogle Scholar
  114. Levinson, A. D., and Levine, A. J., 1977b, The group C adenovirus tumor antigens: Identification in infected and transformed cells and peptide map analysis, Cell 11: 871.CrossRefGoogle Scholar
  115. Levinson, A. D., Oppermann, H., Levintow, L., Varmus, H. E., and Bishop, J. M., 1978, Evidence that the transforming gene of avian sarcoma virus encodes a protein kinase associated with a phosphoprotein, Cell 15: 561.CrossRefGoogle Scholar
  116. Lin, D. C., and Lin, S., 1979, Actin polymerization induced by a motility-related high-affinity cytochalasin binding complex from human erythrocyte membrane, Proc. Natl. Acad. Sci. U.S.A. 76: 2345.CrossRefGoogle Scholar
  117. Lloyd, C. W., Smith, C. G., Woods, A., and Rees, D. A., 1977, Mechanisms of cellular adhesion. II. The interplay between adhesion, the cytoskeleton and morphology in substrate-attached cells, Exp. Cell Res. 110: 427.CrossRefGoogle Scholar
  118. Maness, P. F., Engeser, H., Greenberg, M. E., O’Farrell, M., Gall, W. E., and Edelman, G. M., 1979a. Characterization of the protein kinase activity of avian sarcoma virus src gene product, Proc. Natl. Acad. Sci. U.S.A. 76: 5028.CrossRefGoogle Scholar
  119. Maness, P. F., Engeser, H., Greenberg, M. E., O’Farrell, M., Gall, W. E., and Edelman, G. M., 1979b, Activities of the src gene product of avian sarcoma virus, Cold Spring Harbor Symp. Quant. Biol. 44: 949.CrossRefGoogle Scholar
  120. Martin, G. S., 1970, Rous sarcoma virus: A function required for the maintenance of the transformed state, Nature (London) 227: 1021.CrossRefGoogle Scholar
  121. Martin, R. G., and Chou, J. Y., 1975, Simian virus 40 functions required for the establishment and maintenance of malignant transformation, J. Virol. 15: 599.Google Scholar
  122. Martin, R. G., Setlow, V. P., Edwards, C. A. F., and Vembu, D., 1979, The roles of simian virus 40 tumor antigens in transformation of Chinese hamster lung cells, Cell 17: 635.CrossRefGoogle Scholar
  123. Maupin-Szamier, P., and Pollard, T., 1978, Actin-filament destruction by osmium tetraoxide, J. Cell Biol. 77: 837.CrossRefGoogle Scholar
  124. Mautner, V., and Hynes, R. O., 1977, Surface distribution of LETS protein in relation to the cytoskeleton of normal and transformed cells, J. Cell Biol. 75: 743.CrossRefGoogle Scholar
  125. McClain, D. A., D’Eustachio, P., and Edelman, G. M., 1977, Role of surface modulating assemblies in growth control of normal and transformed fibroblasts, Proc. Natl. Acad. Sci. U.S.A. 74: 666.CrossRefGoogle Scholar
  126. McClain, D. A., Maness, P. F., and Edelman, G. M., 1978, Assay for early cytoplasmic effects of the src gene product of Rous sarcoma virus, Proc. Natl. Acad. Sci. U.S.A. 75: 2750.CrossRefGoogle Scholar
  127. Milcarek, C., and Zahn, K., 1978, The synthesis of ninety proteins including actin throughout the Hela cell cycle, J. Cell Biol. 79: 833.CrossRefGoogle Scholar
  128. Moore, J. L., Chowdhury, K., Martin, M., and Israel, M. A., 1980, Polyoma large tumor antigen is not required for tumorigenesis mediated by viral NDA, Proc. Natl. Acad. Sci. U.S.A. 77: 1336.CrossRefGoogle Scholar
  129. Moore, P. B., Ownby, C. L., and Carraway, K. L., 1978, Interactions of cytoskeletal elements with the plasma membrane of sarcoma 180 ascites tumor cells, Exp. Cell. Res. 115: 331.CrossRefGoogle Scholar
  130. Osborn, M., and Weber, K., 1975, Simian virus 40 gene A function and maintenance of transformation, J. Virol. 15: 636.Google Scholar
  131. Osborn, M., and Weber, K., 1977, The detergent-resistant cytoskeleton of tissue culture cells includes the nucleus and the microfilament bundles, Exp. Cell Res. 106: 339.CrossRefGoogle Scholar
  132. Osborn, M., Born, T., Koitsch, H.-J., and Weber, K., 1978, Stereo immunofluorescence microscopy: I. Three-dimensional arrangement of microfilaments, microtubules, and tonofilaments, Cell 14: 477.CrossRefGoogle Scholar
  133. Pastan, I. H., Johnson, G. S., and Anderson, W. B., 1975, A role of cyclic nucleotides in growth control, Annu. Rev. Biochem. 44: 491.CrossRefGoogle Scholar
  134. Paucha, E. Mellor, A., Harvey, R., Smith, A., Hewick, R., and Waterfield, M., 1978, Large and small tumor antigens from simian virus 40 have identical amino termini mapping at 0.65 map units, Proc. Natl. Acad. Sci. U.S.A. 75: 2165.CrossRefGoogle Scholar
  135. Paulin, D., Nicolas, J. F., Yaniv, M., Jacob, F., Weber, K., and Osborn, M., 1978, Actin and tubulin in teratocarcinoma cells, Dev. Biol. 66: 488.CrossRefGoogle Scholar
  136. Pollack, R. E., and Kopelovich, L., 1979, The cytoskeleton in cultured cells: Coordinate in vitro regulation of cell growth and shape, Methods Achiev. Exp. Pathol. 9: 207.Google Scholar
  137. Pollack, R., and Rifkin, D., 1975, Actin-containing cables within anchorage-dependent rat embryo cells are dissociated by plasmin and trypsin, Cell 6: 495.CrossRefGoogle Scholar
  138. Pollack, R., Osborn, M., and Weber, K., 1975, Patterns of organization of actin and myosin in normal and transformed cultured cells, Proc. Natl. Acad. Sci. U.S.A. 72: 994.CrossRefGoogle Scholar
  139. Pollard, T. D., and Weihing, R. R., 1974, Actin and nyosin and cell movement, CRC Crit. Rev. Biochem. 2: 1.CrossRefGoogle Scholar
  140. Poste, G., and Flood, M. K., 1979, Cells transformed by temperature-sensitive mutants of avian sarcoma virus cause tumors in vivo at permissive and nonpermissive temperatures, Cell 17: 789.CrossRefGoogle Scholar
  141. Prives, C., Gilboa, E., Revel, M., and Winocour, E., 1977, Cell-free translation of simian virus 40 early messenger RNA coding for viral T-antigen, Proc. Natl. Acad. Sci. U.S.A. 74: 457.CrossRefGoogle Scholar
  142. Prives, C., Gluzman, Y., and Winocour, E., 1978, Cellular and cell-free synthesis of simian virus 40 T-antigens in permissive and transformed cells, J. Virol. 25: 587.Google Scholar
  143. Purchio, A. F., Erikson, E., and Erikson, R. L., 1977, Translation of 35S and of subgenomic regions of avian sarcoma viruses RNA, Proc. Natl. Acad. Sci. U.S.A. 74: 4661.CrossRefGoogle Scholar
  144. Purchio, A. F., Erikson, E., Brugge, J. S., and Erikson, R. L., 1978, Identification of a polypeptide encoded by the avian sarcoma virus src gene, Proc. Natl. Acad. Sci. U.S.A. 75: 1567.CrossRefGoogle Scholar
  145. Radke, K., and Martin, G. S., 1979, Transformation by Rous sarcoma virus: Effects of src gene expression on the synthesis and phosphorylation of cellular peptides, Proc. Natl. Acad. Sci. U.S.A. 76: 5212.CrossRefGoogle Scholar
  146. Ramaekers, F. C. S., Selten-Versteegen, A. M. E., Benedetti, E. L., Dunia, I., and Bloemendal, H., 1980, In vitro synthesis of the major lens membrane protein, Proc. Natl. Acad. Sci. U.S.A. 77: 725.CrossRefGoogle Scholar
  147. Reddy, V. B., Thimmappaya, B., Dhar, R., Subramanian, K. N., Zain, B. S., Pan, J., Ghosh, P. K., Celma, M. L., and Weissman, S. M., 1978, The genome of simian virus 40, Science 200: 494.CrossRefGoogle Scholar
  148. Richert, N., Davies, P. J. A., Jay, G., and Pastan, I., 1979, Inhibition of the transformation-specific kinase in ASV-transformed cells by Na-tosyl-L-lysyl chloromethyl ketone, Cell 18: 369.CrossRefGoogle Scholar
  149. Riddle, V. G. H., Dubrow, R., and Pardee, A. B., 1979, Changes in the synthesis of actin and other cell proteins after stimulation of serum-arrested cells, Proc. Natl. Acad. Sci. U.S.A. 76: 1298.CrossRefGoogle Scholar
  150. Risser, R., and Pollack, R., 1974, A nonselective analysis of SV40 transformation of mouse 3T3 cells, Virology 59: 477.CrossRefGoogle Scholar
  151. Rohrschneider, L. R., 1979, Immunofluorescence on avian sarcoma virus-transformed cells: Localization of the src gene product, Cell 16: 11.CrossRefGoogle Scholar
  152. Rohrschneider, L. R., 1980, Adhesion plaques of Rous sarcoma virus-transformed cells contain the src gene product, Proc. Natl. Acad. Sci. U.S.A. 77: 3514.CrossRefGoogle Scholar
  153. Ross, R., and Bornstein, P., 1969, The elastic fiber. I. The separation and partial characterization of its macromolecular components, J. Cell Biol. 40: 366.CrossRefGoogle Scholar
  154. Roussel, M., Saule, S., Lagrou, C., Rommens, C., Beug, H., Graf. T., and Stehelin, D., 1979, Three new types of viral oncogene of cellular origin for haematopoietic cell transformation, Nature (London) 281: 452.Google Scholar
  155. Royer-Pokora, B., Beug, H., Claviez, M., Winkhardt, H.J., Friis, R. R., and Graff, T., 1978, Transformation parameters in chicken fibroblasts transformed by AEV and MC29 avian leukemia viruses, Cell 13: 751.CrossRefGoogle Scholar
  156. Royer-Pokora, B., Grieser, S., Beug,.-1., and Graf, T., 1979, Mutant avian erythroblastosis virus with restricted target cell specificity, Nature (London) 282: 750.Google Scholar
  157. Rubinstein, P. A., and Spudich, J. A., 1977, Actin microheterogeneity in chick embryo fibroblasts, Proc. Natl. Acad. Sci. U.S.A. 74: 120.CrossRefGoogle Scholar
  158. Rubin, C. S., and Rosen, O. M., 1975, Protein phosphorylation, Annu. Rev. Biochem. 44: 831.CrossRefGoogle Scholar
  159. Rubin, R. W., Warren, R. H., Lukeman, D. S., and Clements, E., 1978, Actin content and organization in normal and transformed cells in culture, J. Cell Biol. 78: 28.CrossRefGoogle Scholar
  160. Rubinstein, N., Chi, J., and Holtzer, H., 1976, Coordinated synthesis and degradation of actin and myosin in a variety of myogenic and nonmyogenic cells, Exp. Cell Res. 97: 387.CrossRefGoogle Scholar
  161. Rübsamen, H., Friis, R. R., and Bauer, H., 1979, src gene product from different strains of avian sarcoma virus: Kinetics and possible mechanism of heat inactivation of protein kinase activity from cells infected by transformation-defective, temperature-sensitive mutant and wild-type virus, Proc. Natl. Acad. Sci. U.S.A. 76: 967.Google Scholar
  162. Rundell, K., Collins, J. K., Tegtmeyer, P., Ozer, H. L., Lai, C.-J., and Nathans, D., 1976, Identification of simian virus 40 Protein A., J. Virol. 21: 636.Google Scholar
  163. Sanger, J. W., 1975a, Intracellular localization of actin with fluorescently-labeled heavy meromyosin, Cell Tissue Res. 161: 431.CrossRefGoogle Scholar
  164. Sanger, J. W., 1975B, Changing patterns of actin localization during cell division, Proc. Natl. Acad. Sci. U.S.A. 72: 1913.Google Scholar
  165. Schaffhausen, B. S., and Benjamin, T. L., 1979, Phosphorylation of polyoma T antigens, Cell 18: 935.CrossRefGoogle Scholar
  166. Schaffhausen, B., Silver, J., and Benjamin, T., 1978, Tumor antigen(s) in cells productively infected by wild-type polyoma virus and mutant NG-18, Proc. Natl. Acad. Sci. U.S.A. 75: 79.CrossRefGoogle Scholar
  167. Schlegel, R., and Benjamin, T. L., 1978, Cellular alterations dependent upon the polyoma virus Hr-t function: Separation of mitogenic from transforming capacities, Cell 14: 587.CrossRefGoogle Scholar
  168. Schloss, J. A., and Goldman, R. D., 1979, Isolation of a high molecular weight actin-binding protein from baby hamster kidney (BHK-21) cells, Proc. Natl. Acad. Sci. U.S.A. 76: 4484.CrossRefGoogle Scholar
  169. Schollmeyer, J. E., Furcht, L. T., Goll, D. E., Robson, R. M., and Stromer, M. H., 1976, Localization of contractile proteins in smooth muscle cells and in normal and transformed fibroblasts, in: Cell Motility ( R. Goldman, T. Pollard, and J. Rosenbaum, eds.), pp. 361–388, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  170. Sefton, B. M., Hunter, T., and Beemon, K., 1979, Product of in vitro translation of the Rous sarcoma virus src gene has protein kinase activity, J. Virol. 30: 311.Google Scholar
  171. Sefton, B. M., Hunter, T., and Beemon, K., 1980, Temperature-sensitive protein kinase activity, J. Virol. 33: 220.Google Scholar
  172. Sen, A., and Todaro, G. J., 1979, A murine sarcoma virus-associated protein kinase: Interaction with actin and microtubular protein, Cell 17: 347.CrossRefGoogle Scholar
  173. Shenk, T., Carbon, J., and Berg, P., 1976, Construction and analysis of viable deletion mutants of simian virus 40, J. Virol. 18: 664.Google Scholar
  174. Shin, S., Freedman, V. H., Risser, R., and Pollack, R., 1975, Tumorigenicity of virus-transformed cells in nude mice is correlated specifically with anchorage-independent growth in vitro, Proc. Natl. Acad. Sci. U.S.A. 72: 4435.CrossRefGoogle Scholar
  175. Shizuta, Y., Davies, P. J. A., Olden, K., and Pastan, I., 1976, Diminished content of plasma membrane-associated myosin in transformed fibroblasts, Nature (London) 261: 414.CrossRefGoogle Scholar
  176. Sief, R., and Cuzin, F., 1977, Temperature-sensitive growth regulation in one type of transformed rat cell induced by the ts-a mutant of polyoma virus, J. Virol. 24: 721.Google Scholar
  177. Silver, J., Schaffhausen, B., and Benjamin, T., 1978, Tumor antigens induced by nontransforming mutants of polyoma virus, Cell 15: 485.CrossRefGoogle Scholar
  178. Singer, I. I., 1979, The fibronexus: A transmembrane association of fibronectin-containing fibers and bundles of 5nm microfilaments in hamster and human fibroblasts, Cell 16: 675.CrossRefGoogle Scholar
  179. Sleigh, M. J., Topp, W. C., Hanich, R., and Sambrook, J. F., 1978, Mutants of SV40 with an altered small-t protein are reduced in their ability to transform cells, Cell 14: 79.CrossRefGoogle Scholar
  180. Small, J. V., Isenberg, G., and Celis, J. E., 1978, Polarity of actin at the leading edge of cultured cells, Nature (London) 272: 638.CrossRefGoogle Scholar
  181. Smart, J. E., and Ito, Y., 1978, Three speicies of polyoma virus tumor antigens share common peptides probably near the animo terminal of the proteins, Cell 15: 1427.CrossRefGoogle Scholar
  182. Smith, A. E., Smith, R., Griffin, G., and Fried, M., 1979. Protein kinase activity associated with polyoma virus middle-T antigen in vitro, Cell 18: 915.Google Scholar
  183. Soeda, E., Arrand, J. R., Smolar, N., and Griffin, B. E., 1979, Sequence from early region of polyoma virus DNA containing viral replication origin and encoding small, middle, and (part of) large-T antigens, Cell 17: 357.CrossRefGoogle Scholar
  184. Soeda, E., Arrand, J. R., Smolar, N., Walsh, J. E., and Griffin, B. E., 1980a, Coding potential and regulatory signals of the polyoma virus genome, Nature (London) 283: 445.CrossRefGoogle Scholar
  185. Soeda, E., Maruyama, T., Arrand, J. R., and Griffin, B. E., 1980b, Host-dependent evolution of three papova viruses, Nature (London) 285: 165.CrossRefGoogle Scholar
  186. Somers, K. D., Weberg, A. D., and Steiner, S., 1977, Cyclic AMP-induced morphological transformation of cells infected by temperature-sensitive mouse sarcoma virus, J. Cell Biol. 74: 707.CrossRefGoogle Scholar
  187. Soule, H. R., and Butel, J. S., 1979, Subcellular localization of simian virus 40 large tumor antigen, J. Virol. 30: 523.Google Scholar
  188. Staneloni, R., Fluck, M., and Benjamin, T., 1977, Host range selection of transformation-defective hr-t mutants of polyoma virus, Virology 77: 598.CrossRefGoogle Scholar
  189. Steinberg, B., Pollack, R., Topp, W., and Botchan, M., 1978, Isolation and characterization of T-antigen negative revertants from a line of transformed rat cells containing one copy of the SV40 genome, Cell 13: 19.CrossRefGoogle Scholar
  190. Steinberg, R. A., 1980, Actin nascent chains are substrates for cAMP-dependent phosphorylation in vivo, Proc. Natl. Acad. Sci. U.S.A. 77: 910.CrossRefGoogle Scholar
  191. Stoker, M., 1968, Abortive transformation by polyoma virus, Nature 218: 234.CrossRefGoogle Scholar
  192. Stoker, M., O’Neill, C., Berryman, S., and Waxman, V., 1968, Anchorage and growth regulation in normal and virus-transformed cells, Int. J. Cancer 3: 683.CrossRefGoogle Scholar
  193. Stossel, T. P., 1978, Contractile proteins in cell structure and function, Annu. Rev. Med. 29: 427.CrossRefGoogle Scholar
  194. Tegtmeyer, P., 1975, Function of simian virus 40 gene A in transforming infection, J. Virol. 15: 613.Google Scholar
  195. Tjian, R., 1978, The binding site on SV40 DNA for a T-antigen-related protein, Cell 13: 165.CrossRefGoogle Scholar
  196. Tjian, R., and Robbins, A., 1979, Enzymatic activities associated with a purified simian virus 40 T-antigen-related protein, Proc. Natl. Acad. Sci. U.S.A. 76: 610.CrossRefGoogle Scholar
  197. Toh, B. H., Hard, G. C., Gauchi, M. N., and Muller, H. K., 1976, Smooth-muscle-associated contractile proteins in renal mesenchymal tumour cells and in transformed cells from DMNinjected rats, Br. J. Cancer 34: 533.CrossRefGoogle Scholar
  198. Trinkhaus, J. P., and Lentz, T. L., 1967, Surface specializations of Fundulus cells and their relation to cell movements during gastrulation, J. Cell Biol. 32: 139.CrossRefGoogle Scholar
  199. Tucker, R. W., and Sanford, K. K., 1978, Tubulin and actin in paired nonneoplastic and spontaneously transformed neoplastic cell lines in vitro: Fluorescent antibody studies, Cell 13: 629.CrossRefGoogle Scholar
  200. Vaheri, A., and Ruoslahti, E., 1974, Disappearance of a major cell-type specific surface glycoprotein antigen (SF) after transformation by Rous sarcoma virus, Int. J. Cancer 13: 579.CrossRefGoogle Scholar
  201. Vanderkerckhove, J., and Weber, K., 1978a, Mammalian cytoplasmic actins are the products of at least two genes and differ in primary structure in at least 25 identified positions from skeletal muscle actins, Proc. Natl. Acad. Sci. U.S.A. 75: 1106.CrossRefGoogle Scholar
  202. Vanderkerckhove, J., and Weber, K., 1978b, Actin amino-acid sequences: Comparison of actins from calf thymus, bovine, brain, and SV40-transformed mouse 3T3 cells with rabbit skeletal muscle actin, Eur. J. Biochem. 90: 451.CrossRefGoogle Scholar
  203. Vollet, J. J., Brugge, J. S., Noonan, C. A., and Butel, J., 1977, The role of SV40 gene A in the alteration of microfilaments in transformed cells, Exp. Cell Res. 105: 119.CrossRefGoogle Scholar
  204. Wallach, D., Davies, P. J. A., and Pastan, I., 1978, Purification of mammalian filamin, J. Biol. Chem. 253: 3328.Google Scholar
  205. Wang, E., and Goldberg, A., 1976, Changes in microfilament organization and surface topography upon transformation of chick embryo fibroblasts with Rous sarcoma virus, Proc. Natl. Acad. Sci. U.S.A. 73: 4065.CrossRefGoogle Scholar
  206. Wang, E., and Goldberg, A., 1979, Effects of the src gene product on microfilament and microtubule organization in avian and mammalian cells infected with the same temperature-sensitive mutant of Rous sarcoma virus, Virology 92: 201.CrossRefGoogle Scholar
  207. Wang, K., Ash, J. F., and Singer, S. J., 1375, Filamin, a new high-molecular-weight protein found in smooth muscle and non-muscle cells, Proc. Natl. Acad. Sci. U.S.A. 72: 4483.CrossRefGoogle Scholar
  208. Wartiovaara, J., Linder, E., Ruoshahti, E., and Vaheri, A., 1974, Distribution of fibroblast surface antigen, association with fibrillar structures of normal cells and loss upon viral transformation, J. Exp. Med. 140: 1522.CrossRefGoogle Scholar
  209. Weber, K., Lazarides, E., Goldman, R. D., Vogel, A., and Pollack, R., 1975, Localization and distribution of actin fibers in normal, transformed and revertant cells, Cold Spring Harbor Symp. Quant. Biol. 34: 363.Google Scholar
  210. Weber, K., Koch, R., Herzog, W., and Vanderkerckhove, J., 1977, The isolation of tubulin and actin from mouse 3T3 cells transformed by simian virus 40 (SV3T3 cells), an established line growing in culture, Eur. J. Biochem. 78: 27.CrossRefGoogle Scholar
  211. Weber, M. J., 1975, Inhibition of protease activity in cultures of Rous sarcoma virus-transformed cells: Effect on the transformed phenotype, Cell 5: 253.CrossRefGoogle Scholar
  212. Weber, M. J., and Friis, R. R., 1979, Dissociation of transformation parameters using temperature-conditional mutants of Rous sarcoma virus, Cell 16: 25.CrossRefGoogle Scholar
  213. Webster, R. E., Henderson, D., Osborn, M., and Weber, K., 1978, Three-dimensional electron microscopical visualization of the cytoskeleton of animal cells: Immunoferritin identification of actin-and tubulin-containing structures, Proc. Natl. Acad. Sci. U.S.A. 75: 5511.CrossRefGoogle Scholar
  214. Wehland, J., Osborn, M., and Weber, K., 1979, Cell-to-substratum contacts in living cells: A direct correlation between interference-reflexion and indirect immunofluorescence microscopy using antibodies against actin and a-actinin, J. Cell Sci. 37: 257.Google Scholar
  215. Weihing, R. T., 1979, The cytoskeleton and plasma membrane, Methods Achiev. Exp. Pathol. 8: 42.Google Scholar
  216. Wessells, N. K., Spooner, B. S., and Luduena, M. A., 1973, Surface movements, microfilaments, and cell locomotion, in: Locomotion in Tissue Cells, pp. 53–82, Elsevier, AmsterdamGoogle Scholar
  217. Wickus, G. G., Branton, P. E., and Robbins, P. W., 1974, Rous sarcoma virus transformation of the chick cell surface, in: Control of Proliferation in Animal Cells ( B. Clarkson and R. Baserga, eds.), pp. 541–555, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  218. Wickus, G. G., Gruenstein, E., Robbins, P. W., and Rich, A., 1975, Decrease in membrane-associated actin of fibroblasts after transformation by Rous sarcoma virus, Proc. Natl. Acad. Sci. U.S.A. 72: 746.CrossRefGoogle Scholar
  219. Willingham, M. C., and Pastan, I., 1975a, Cyclic AMP and cell morphology in cultured fibroblasts: Effects on cell shape, microfilament and microtubule distribution, and orientation to substratum, J. Cell Biol. 67: 146.CrossRefGoogle Scholar
  220. Willingham, M. C., and Pastan, I., 1975b, Cyclic AMP modulates microvillus formation and agglutinability in transformed and normal mouse fibroblasts, Proc. Natl. Acad. Sci. U.S.A. 72: 1263.CrossRefGoogle Scholar
  221. Willingham, M. C., Yamada, K. M., Yamada, S. S., Pouysségur, S., and Pastan, I., 1977, Microfilament bundles and cell shape are related to adhesiveness to substratum and are dissociable from growth control in cultured fibroblasts, Cell 10: 375.CrossRefGoogle Scholar
  222. Willingham, M. C., Jay, G., and Pastan, I., 1979, Localization of the avian sarcoma virus src gene product to the plasma membrane of transformed cells by electron microscopic immunocytochemistry, Cell 18: 125.CrossRefGoogle Scholar
  223. Witte, O. N., Dasgupta, A., and Baltimore, D., 1980, Abelson murine leukemia virus protein is phosphorylated in vitro to form phosphotyrosine, Nature (London) 285: 826.CrossRefGoogle Scholar
  224. Wolosewick, J. J., and Porter, K. R., 1976, Stereo high voltage electron microscopy of whole cells of the human diploid line WI-38, Am. J. Anat. 147: 303.CrossRefGoogle Scholar
  225. Wolosewick, J. J., and Porter, K. R., 1979, Microtrabecular lattice of the cytoplasmic ground substance, J. Cell Biol. 82: 114.CrossRefGoogle Scholar
  226. Wulf, E., Deboben, A., Bautz, F. A., Faulstich, H., and Wieland, T., 1979, Fluorescent phalloto- xin, a tool for the visualization of cellular actin, Proc. Natl. Acad. Sci. U.S.A. 76: 4498.CrossRefGoogle Scholar
  227. Wyke, J. A., Bell, J. G., and Beamand, J. A., 1975, Genetic recombination among temperature- sensitive mutants of Rous sarcoma virus, Cold Spring Harbor Symp. Quant. Biol. 39: 897.CrossRefGoogle Scholar
  228. Yamada, K. M., Yamada, S. S., and Pastan, I., 1976a, Cell surface protein partially restores morphology, adhesiveness and contact inhibition of movement to transformed fibroblasts, Proc. Natl. Acad. Sci. U.S.A. 73: 1217.CrossRefGoogle Scholar
  229. Yamada, K. M., Ohanian, S. H., and Pastan, I., 1976b, Cell surface protein decreases microvilli and ruffles on transformed mouse and chick cells, Cell 9: 241.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Patricia F. Maness
    • 1
  1. 1.Department of Biochemistry and Nutrition, School of MedicineThe University of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations