Polymorphic Assemblies of Tubulin

  • Paul R. Burton


This chapter does not deal directly with cell motility as such; rather, it focuses on various structural manifestations of tubulin, the constituent protein of microtubules. Microtubules are important components of the cytoskeleton of cells, and only recently have we begun to perceive the associations between microtubules and other components of the cytoskeleton, such as actin (Griffith and Pollard, 1978; Fujii and Tanaka, 1979). There are several reasons that polymorphic assemblies of tubulin are of interest. First, determining how such structures are formed (e.g., under what conditions) and into what they might be transformed would provide information on the assembly potential of the tubulin dimer, either with or without the associated proteins that copurify with tubulin. Second, by studying the arrangement of dimers in tubulin polymorphs, information can be obtained on the various kinds of binding interactions between dimers and possible conformational states of the molecule. The kinds of structures that can be formed, and their stability, can provide clues to the tubulin polymorphs that may exist in vivo in normal and diseased or aged cells, even though there is always uncertainty associated with the degree to which the behavior of tubulin in vitro can be extrapolated to its behavior in vivo in the cytoplasmic milieu of the living cell.


Vinca Alkaloid Microtubule Assembly Tubulin Dimer Ribbon Structure Tubulin Assembly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amos, L. A., and Baker, T. S., 1979, The three-dimensional structure of tubulin protofilaments, Nature (London) 279: 607.CrossRefGoogle Scholar
  2. Amos, L. A., and Klug, A., 1974, Arrangement of subunits in flagellar microtubules, J. Cell Sci 14: 523.Google Scholar
  3. Behnke, O., 1967, Incomplete microtubules observed in mammalian blood platelets during microtubule polymerization, J. Cell Biol 34: 697.CrossRefGoogle Scholar
  4. Behnke, O., 1975a, An outer component of microtubules, Nature (London) 257: 709.CrossRefGoogle Scholar
  5. Behnke, O., 1975b, Studies on isolated microtubules: Evidence for a clear space component, Cytobiologie 11: 366.Google Scholar
  6. Behnke, O., and Forer, A., 1972, Vinblastine as a cause of direct transformation of some microtubules into helical structures, Exp. Cell Res 73: 506.CrossRefGoogle Scholar
  7. Bensch, K. G., and Malawista, S. E., 1968, Microtubule crystals: A new biophysical phenomenon induced by Vinca alkaloids, Nature (London) 218: 1176CrossRefGoogle Scholar
  8. Bensch, K. G., and Malawista, S. E., 1969, Microtubular crystals in mammalian cells, J. Cell Biol 40: 95.CrossRefGoogle Scholar
  9. Bibring, T., and Baxandall, J., 1971, Selective extraction of isolated mitotic apparatus: Evidence that typical microtubule protein is extracted by organic mercurial. J. Cell Biol 48: 324.CrossRefGoogle Scholar
  10. Borisy, G. G., and Olmsted, J. B., 1972, Nucleated assembly of microtubules in porcine brain extracts, Science 177: 1196.CrossRefGoogle Scholar
  11. Borisy, G. G., Marcum, J. M., Olmsted, J. B., Murphy, D. B., and Johnson, K. A., 1975, Purification of tubulin and associated high molecular weight proteins from porcine brain and characterization of microtubule assembly in vitro, Ann. N. Y. Acad. Sci 253: 107.CrossRefGoogle Scholar
  12. Briggs, R. T., 1970, Vinblastine-induced filaments and crystals in bullfrog leukocytes and erythrocytes, J. Cell Biol 47: 25a.Google Scholar
  13. Briggs, R. T., 1972, Ultrastructure of bullfrog bloodfrog blood cells with special emphasis on microtubular elements, Ph. D. dissertation, University of Kansas, Lawrence.Google Scholar
  14. Bryan, J., 1972, Vinblastine and microtubules. II. Characterization of two protein subunits from isolated crystals, J. Mol. Biol 66: 157.CrossRefGoogle Scholar
  15. Bryan, J., 1974, Biochemical properties of microtubules, Fed. Proc 33: 152.Google Scholar
  16. Bryan, J., 1976, A quantitative analysis of microtubule elongation, J. Cell Biol 71: 749.CrossRefGoogle Scholar
  17. Burns, R. G., 1978, Spatial organization of the microtubule-associated proteins of reassembled brain microtubules, J. Ultrastruct. Res 65: 73.CrossRefGoogle Scholar
  18. Burton, P. R., 1966a, Substructure of certain cytoplasmic microtubules: An electron microscopic study, Science 154: 903.CrossRefGoogle Scholar
  19. Burton, P. R., 1966b, A comparative electron microscopic study of cytoplasmic microtubules and axial unit tubules in a spermatozoan and a protozoan, J. Morphol 120: 397.CrossRefGoogle Scholar
  20. Burton, P. R., 1970, Optical diffraction and translational reinforcement of microtubules having a prominent helical wall structure, J. Cell Biol 44: 693.CrossRefGoogle Scholar
  21. Burton, P. R., 1979a, Differences in binding of tannic acid and cationized ferritin to the two surfaces of protofilaments in microtubules and ribbons, J. Submicrosc. Cytol 11: 419.Google Scholar
  22. Burton, P. R., 1979b, Binding of cationized ferritin to in vitro polymerized microtubules and ribbon structures and studies of its ability to induce assembly of MAP-free tubulin, J. Cell Biol 83: 330a.Google Scholar
  23. Burton, P. R., and Fernandez, H. L., 1973. Delineation by lanthanum staining of filamentous elements associated with the surfaces of axonal microtubules, J. Cell Sci 12: 567.Google Scholar
  24. Burton, P. R., and Frost, L. C., 1979, Studies of diverse structures assembled from MAP-free tubulin in the presence of low molecular weight polylysine, J. Cell Biol 83: 330a.Google Scholar
  25. Burton, P. R., and Himes, R. H., 1978, Electron microscope studies of pH effects on assembly of tubulin free of associated proteins: Delineation of substructure by tannic acid staining, J. Cell Biol 77: 120.Google Scholar
  26. Burton, P. R., and Hinkley, R. E., 1974, Further electron microscopic characterization of axop-lasmic microtubules of the ventral nerve cord of the crayfish, J. Submicrosc. Cytol 6: 311.Google Scholar
  27. Burton, P. R., and Silveira, M., 1971, Electron microscopic and optical diffraction studies of negatively stained axial units of certain platyhelminth sperm, J. Ultrastruct. Res 36: 757.CrossRefGoogle Scholar
  28. Burton, P. R., Hinkley, R. E., and Pierson, G. B., 1975, Tannic acid-stained microtubules with 12, 13, and 15 protofilaments, J. Cell Biol 65: 227.CrossRefGoogle Scholar
  29. Chasey, D., 1972, Subunit arrangement in ciliary microtubules from Tetrahymena pyriformis, Exp. Cell Res 74: 140.CrossRefGoogle Scholar
  30. Cleveland, D. W., Hwo, S., and Kirschner, M. W., 1977a, Purification of tau, a microtubuleassociated protein that induces assembly of microtubules from purified tubulin, J. Mol. Biol 116: 207.CrossRefGoogle Scholar
  31. Cleveland, D. W., Hwo, S., and Kirschner, M. W., 1977b, Physical and chemical properties ofGoogle Scholar
  32. purified tau factor and the role of tau in microtubule assembly, J Mol. Biol 116:227.Google Scholar
  33. Cleveland, D. W., Spiegelman, B. M., and Kirschner, M. W., 1979, Conservation of microtubule associated proteins, J. Biol. Chem 254: 12670.Google Scholar
  34. Cohen, C., DeRosier, D., Harrison, S. C., Stephens, R. E., and Thomas, J., 1972, X-ray patterns from microtubules, Ann. N. Y. Acad. Sci 253: 53.CrossRefGoogle Scholar
  35. Cohen, W. D., and Gottlieb, T., 1971, C-microtubules in isolated mitotic spindles, J . Cell Sci. 9: 603.Google Scholar
  36. Crepeau, R: H., McEwen, B., Dykes, G., and Edelstein, S. J., 1977, Structural studies on porcine brain tubulin in extended sheets, J. Mol. Biol 116: 301.Google Scholar
  37. De Brabander, M., De Mey, J., Joniau, M., and Geuens, G., 1977, Ultrastructural immunocytochemical distribution of tubulin in cultured cells treated with microtubule inhibitors, Cell Biol. Int. Rep 1: 177.CrossRefGoogle Scholar
  38. De Mey, J., De Brabander, M., Joniau, M., Hoebeke, J., and Geuens, G., 1976, Immunoperoxidase visualization of microtubules and microtubular proteins, Nature (London) 264: 273.CrossRefGoogle Scholar
  39. Dentier, W. L., Granett, S., and Rosenbaum, J. L., 1975, Ultrastructural localization of the high molecualr weight proteins associated with in vitro-assembled brain microtubules. J. Cell Biol 65: 237.CrossRefGoogle Scholar
  40. Donoso, J. A., Haskins, K. M., and Himes, R. H., 1979, Effect of microtubule-associated proteins on the interaction of vincristine with microtubules and tubulin, Cancer Res. 39: 1604.Google Scholar
  41. Dustin, P., 1978, Microtubules, Springer-Verlag, Heidelberg.CrossRefGoogle Scholar
  42. Erickson, H. P., 1974a, Microtubule surface lattice and subunit structure and observations on reassembly, J. Cell Biol 60: 153.CrossRefGoogle Scholar
  43. Erickson, H. P., 1974b, Assembly of microtubules from preformed, ring-shaped protofilaments and 6-S tubulin, J. Supramol. Struct 2: 393.CrossRefGoogle Scholar
  44. Erickson, H. P., 1975, Negatively stained vinblastine aggregates, Ann. N. Y. Acad. Sci 253: 51.CrossRefGoogle Scholar
  45. Erickson, H. P., 1976, Facilitation of microtubule assembly by polycations, in: Cell Motility ( R. Goldman, T. Pollard, and J. Rosenbaum, eds.), pp. 1069 - 1080, Cold Spring Harbor Labora-tory, Cold Spring Harbor, New York.Google Scholar
  46. Erickson, H. P., and Voter, W. A., 1976, Polycation-induced assembly of purified tubulin, Proc. Natl. Acad. Sci. U.S.A 73: 2813.CrossRefGoogle Scholar
  47. Fellous, A., Francon, J., Lennon, A. M., and Nunez, J., 1977, Microtubule assembly in vitro: Purification of assembly-promoting factors, Eur. J. Biochem 78: 167.CrossRefGoogle Scholar
  48. Frigon, R. P., and Timasheff, S. N., 1975, Magnesium-induced self-association of calf brain tubulin. I. Stoichiometry, Biochemistry 14: 4559.CrossRefGoogle Scholar
  49. Fujii, T., and Tanaka, R., 1979, Interaction of rat brain microtubule proteins and 6 S tubulin with rabbit skeletal muscle actomyosin, Life Sci. 24: 1683.CrossRefGoogle Scholar
  50. Fujiwara, K., and Tilney, L. G., 1975, Substructural analysis of the microtubule and its polymorphic forms, Ann. N. Y. Acad. Sci 253: 27.CrossRefGoogle Scholar
  51. Gaskin, F., Kramer, S. B., Cantor, C. R., Adelstein, R., and Shelanski, M. L., 1974, A dynein-like protein associated with neurotubules, FEBS Lett. 40: 281.CrossRefGoogle Scholar
  52. Gregory, D. W., and Pirie, B. J. S., 1973, Wetting agents for biological electron microscopy, J. Microsc 99: 261.Google Scholar
  53. Griffith, L. M., and Pollard, T. D., 1978, Evidence for actin filament-microtubule interaction mediated by microtubule-associated proteins, J. Cell Biol 78: 958.CrossRefGoogle Scholar
  54. Grimstone, A. V., and Klug, A., 1966, Observations on the substructure of flagellar fibers, J. Cell Sci 1: 351.Google Scholar
  55. Hauser, M., and Schwab, D., 1974, Mikrotubuli und helikale Mikrofilamente im Cytoplasma der Foraminifere Allogromia laticollaris Arnold, Cytobiologie 9: 263.Google Scholar
  56. Herzog, W., and Weber, K., 1978, Microtubule formation by pure brain tubulin in vitro. The influence of dextran and poly(ethylene glycol), Eur. J. Biochem 91: 249.CrossRefGoogle Scholar
  57. Himes, R. H., Burton, P. R., Kersey, R. N., and Pierson, G. B., 1976a, Brain tubulin polymeriza- tion in the absence of “microtubule associated proteins, Proc. Natl. Acad. Sci. U.S.A 73: 4397.CrossRefGoogle Scholar
  58. Himes, R. H., Kersey, R. N., Heller-Bettinger, I., and Samson, F. E., 1976b, Action of the Vinca alkaloids vincristine, vinblastine, and desacetyl vinblastine amide on microtubules in vitro, Cancer Res. 36: 3798.Google Scholar
  59. Himes, R. H., Burton, P. R., and Gaito, J. M., 1977, Dimethyl sulfoxide-induced self-assembly of tubulin lacking associated proteins, J. Biol. Chem 252: 6222.Google Scholar
  60. Hinkley, R. E., 1976, Microtubule-macrotubule transformations induced by volatile anesthetics, J. Ultrastruct. Res 57: 237.CrossRefGoogle Scholar
  61. Hinkley, R. E., and Samson, F. E., 1974, The effects of an elevated temperature, colchicine, and vinblastine on axonal microtubules of the crayfish (Procambarus clarkii), J. Exp Zool 188: 321.CrossRefGoogle Scholar
  62. Jacobs, M., Bennett, P. M., and Dickens, M. J., 1975a, Duplex microtubule is a new form of tubulin assembly induced by polycations, Nature (London) 257: 707.CrossRefGoogle Scholar
  63. Jacobs, M., Caplow, M., Bennett, P. M., and Dickens, M. J., 1975b, Studies on microtubule assembly, in: Microtubules and Microtubule Inhibitors ( M. Borgers and M. De Brabander, eds.), pp. 115 - 125, North-Holland, Amsterdam.Google Scholar
  64. Jensen, C., and Bajer, A., 1973, Spindle dynamics and arrangement of microtubules, Chromosoma 44: 73.CrossRefGoogle Scholar
  65. Kim, H., Binder, L. I., and Rosenbaum, J. L., 1979, The periodic association of MAP2 with brain microtubules in vitro, J. Cell Biol 80: 266.CrossRefGoogle Scholar
  66. Kirkpatrick, J. B., Hyams, L., Thomas, V. L., and Howley, P. M., 1970, Purification of intact microtubules from brain, J. Cell Biol 47: 389.CrossRefGoogle Scholar
  67. Kirschner, M. W., and Williams, R. C., 1974, The mechanism of microtubule assembly in vitro, J. Supramol. Struct 2: 412.CrossRefGoogle Scholar
  68. Kirschner, M. W., Williams, R. C., Weingarten, M., and Gerhart, J. C., 1974, Microtubules from mammalian brain: Some properties of their depolymerization products and a proposed mechanism of assembly and disassembly, Proc. Natl. Acad. Sci. U.S.A 71: 1159.CrossRefGoogle Scholar
  69. Kirschner, M. W., Honig, L. S., and Williams, R. C., 1975, Quantitative electron microscopy of 6-S tubulin, J. Supramol. Struct 2: 393.Google Scholar
  70. Krishan, A., and Hsu, D., 1969, Observations on the association of helical polyribosomes and filaments with vincristine-induced crystals in Earle’s L-cell fibroblasts, J. Cell Biol 43: 553.CrossRefGoogle Scholar
  71. Kuznetsov, S. A., Gelfand, V. I., Rodionov, V. I., Rosenblat, V. A., and Gulvaeva, J. G., 1978, Polymerization of purified tubulin by synthetic polycations, FEBS Lett. 95: 343.Google Scholar
  72. Langford, G. M., 1978, In vitro assembly of dogfish brain tubulin and the induction of coiled ribbon polymers by calcium, Exp. Cell Res 111: 139.Google Scholar
  73. Larsson, H., Wallin, M., and Edstrom, A., 1976, Induction of a sheet polymer of tubulin by Zn2, Exp. Cell Res 100: 104.CrossRefGoogle Scholar
  74. Ledbetter, M. C., and Porter, K. R., 1963, A microtubule in plant fine structure, J. Cell Biol 19: 239.CrossRefGoogle Scholar
  75. Lee, J. C., and Timasheff, S. N., 1975, The reconstitution of microtubules from purified calf brain tubulin, Biochemistry 14: 5183.CrossRefGoogle Scholar
  76. Lewis, J. C., and Burton, P. R., 1977, Ultrastructural studies of the superior cervical trunk of the mouse: Distribution, cytochemistry, and stability of fibrous elements in preganglionic fibers, J. Comp. Neurol 171: 605.CrossRefGoogle Scholar
  77. Mandelkow, E., and Mandelkow, E., 1979, Junctions between microtubule walls, J. Mol. Biol 129: 135.CrossRefGoogle Scholar
  78. Marantz, R., and Shelanski, M. L., 1970, Structure of microtubular crystals induced by vinblastine in vitro, J. Cell Biol 44: 234.CrossRefGoogle Scholar
  79. Markham, R., Frey, S., and Hills, G. J., 1963, Methods for the enhancement of image detail and accentuation of structure in electron microscopy, Virology 20: 88.CrossRefGoogle Scholar
  80. Matsumura, F., and Hayashi, M., 1976, Polymorphism of tubulin assembly: In vitro formation of sheet, twisted ribbon and microtubule, Biochim. Biophys. Acta 453: 162.CrossRefGoogle Scholar
  81. Mohri, H., 1976, The function of tubulin in motile systems, Biochim. Biophys. Acta 456: 85CrossRefGoogle Scholar
  82. Murphy, D. B., and Borisy, G. G., 1975, Association of high-molecular-weight proteins with microtubules and their role in microtubule assembly in vitro, Proc. Natl. Acad. Sci. U.S.A 72: 2696.CrossRefGoogle Scholar
  83. Nagano, T., and Suzuki, F., 1975, Microtubules with 15 subunits in cockroach epidermal cells, J. Cell Biol 64: 242.CrossRefGoogle Scholar
  84. Ochs, R. L., and Burton, P. R., 1978, Ultrastructural and biochemical characterization of the crayfish nerve cord axoplasmic matrix, J . Cell Biol. 79: 295a.Google Scholar
  85. Olmsted, J. B., Marcum, J. M., Johnson, K. A., Allen, C., and Borisy, G. G., 1974, Microtubule assembly: Some possible regulatory mechanisms, J . Supramol. Struct. 2: 429.CrossRefGoogle Scholar
  86. Pierson, G. B., Burton, P. R., and Himes, R. H., 1978, Alterations in number of protofilaments in microtubules assembled in vitro, J . Cell Biol. 76: 223.CrossRefGoogle Scholar
  87. Pierson, G. B., Burton, P. R., and Himes, R. H., 1979, Wall substructure of microtubules polymerized in vitro from tubulin of crayfish nerve cord and fixed with tannic acid, J. Cell Sci 39: 89.Google Scholar
  88. Raff, E. C., 1979, The control of microtubule assembly in vivo, Int. Rev. Cytol 59: 1.CrossRefGoogle Scholar
  89. Roth, L. E., and Shigenaka, Y 1970, Microtubules in the helizoan axopodium. II. Rapid degradation by cupric and nickelous ions, J. Ultrastruct. Res 31: 356.CrossRefGoogle Scholar
  90. Schechter, J., Yancey, B., and Weiner, R., 1976, Response of tanycytes of rat median eminence to intraventricular administration of colchicine and vinblastine, Anat. Rec 184: 233.CrossRefGoogle Scholar
  91. Schnepf, E., and Deichgraber, G., 1976, The effects of colchicine, ethionine, and deuterium oxide on microtubules in young Sphagnum leaflets, Cytobiologie 13: 341.Google Scholar
  92. Schochet, S. S., Lampert, P. W., and Earle, K. M., 1968, Neuronal changes induced by intrathecal vincristine sulfate, J. Neuropathol. Exp. Neurol 27: 645.CrossRefGoogle Scholar
  93. Shelanski, M. L., and Taylor, E. W., 1968, Properties of the protein subunit of central pair and outer-doublet microtubules of sea urchin flagella, J. Cell Biol 38: 304.CrossRefGoogle Scholar
  94. Sloboda, R. D., Rudolph, S. A., Rosenbaum, J. L., and Greengard, P., 1975, Cyclic AMP-dependent endogenous phosphorylation of a microtubule-associated protein, Proc. Natl. Acad. Sci. U.S.A 72: 177.CrossRefGoogle Scholar
  95. Sloboda, R. D., Dentier, W. L., and Rosenbaum, J. L., 1976a, Microtubule-associated proteins and the stimulation of tubulin assembly in vitro, Biochemistry 15: 4497.CrossRefGoogle Scholar
  96. Sloboda, R. D., Dentier, W. L., Bloodgood, R. A., Telzer, B. R., Granett, S., and Rosenbaum, J. L.,Google Scholar
  97. B, Microtubule-associated proteins (MAPs) and the assembly of microtubules in vitro,in Cell Motility (R. Goldman, T. Pollard, and J. Rosenbaum, eds.), pp. 1171-1212, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  98. Starling, D., 1976. Two ultrastructurally distinct tubulin paracrystals induced in sea-urchin eggs by vinblastine sulphate, J. Cell Sci. 20:79.Google Scholar
  99. Stephens, R. E., and Edds, K. T., 1976, Microtubules: Structure, chemistry, and function, Physiol. Rev 56: 709 - 777.Google Scholar
  100. Tamm, L. K., Crepeau, R., and Edelstein, S. J., 1979, Three-dimensional reconstruction of tubulin in zinc-induced sheets, J. Mol. Biol 130: 473.CrossRefGoogle Scholar
  101. Thomas, M. B., 1970, Transitions between helical and protofibrillar configurations in doublet and singlet microtubules in spermatozoa of Stylochus zebra (Turbellaria, Polycladida), Biol. Bull 138: 219.CrossRefGoogle Scholar
  102. Thomas, M. B., and Henley, C., 1971, Substructure of the cortical singlet microtubules in spermatozoa of Macrostomum (Platyhelminthes, Turbellaria) as revealed by negative staining, Biol. Bull. 141:592.CrossRefGoogle Scholar
  103. Tilney, L. G., and Porter, K. R., 1967, Studies on the microtubules in Heliozoa. II. The effect of low temperature on these structures in the formation and maintenance of the axopodia, J. Cell Biol 34: 327.CrossRefGoogle Scholar
  104. Tilney, L. G., Bryan, J., Bush, D. J., Fujiwara, K., Mooseker, M. S., Murphy, D. B., and Snyder, D. H., 1973, Microtubules: Evidence for 13 protofilaments, J. Cell Biol 59: 267.CrossRefGoogle Scholar
  105. Tyson, G. E., and Bulger, R. E., 1973, Vinblastine-induced paracrystals and unusually large microtubules (macrotubules) in rat renal cells, Z. Zellforsch 141: 443.CrossRefGoogle Scholar
  106. Vallee, R. B., and Borisy, G. G., 1978, The non-tubulin component of microtubule protein oligomers, J. Biol. Chem 253: 2834.Google Scholar
  107. Voter, W. A., and Erickson, H. P., 1979, Tubulin rings: Curved filaments with limited flexibility and two modes of association, J . Supramol. Struct. 10: 419.CrossRefGoogle Scholar
  108. Warfield, R. K. N., and Bouck, G. B., 1974, Microtubule-macrotubule transitions: Intermediates after exposure to the mitotic inhibitor vinblastine, Science 186:1219.Google Scholar
  109. Warfield, R. K. N., and Bouck, G. B., 1975, On macrotubule structure, J . Mol. Biol. 93: 117.CrossRefGoogle Scholar
  110. Weingarten, M. D., Lockwood, A. H., Hwo, S., and Kirschner, M. W., 1975, A protein factor essential for microtubule assembly, Proc. Natl. Acad. Sci. U.S.A 72: 1858.CrossRefGoogle Scholar
  111. Weisenberg, R. C., 1974, The role of ring aggregates ano other structures in the assembly of microtubules, J. Supramol. Struc 2: 451.CrossRefGoogle Scholar
  112. White, J. G., 1968, Effects of colchicine and vinca alkaloids on human platelets, Am. J. Pathol 53: 447.Google Scholar
  113. Wilson, L., Bryan, J., Ruby, A., and Mazia, D., 1970, Precipitation of proteins by vinblastine and calcium ions, Proc. Natl. Acad. Sci. U.S.A 66: 807.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Paul R. Burton
    • 1
  1. 1.Department of Physiology and Cell BiologyUniversity of KansasLawrenceUSA

Personalised recommendations